From 7d6c0514f666fac4119787fe653d20e759f876be Mon Sep 17 00:00:00 2001 From: Cal Wing <20716204+calw20@users.noreply.github.com> Date: Wed, 16 Oct 2024 22:09:24 +1000 Subject: [PATCH] Refactor data loading --- data/x2s5823/_info.yaml | 2 +- data/x2s5824/_info.yaml | 2 +- data/x2s5827/_info.yaml | 2 +- main.py | 199 ++++++++++++++++++------------ pcb-info.yaml => tunnel-info.yaml | 3 + 5 files changed, 126 insertions(+), 82 deletions(-) rename pcb-info.yaml => tunnel-info.yaml (89%) diff --git a/data/x2s5823/_info.yaml b/data/x2s5823/_info.yaml index 6e45217..d41ff71 100644 --- a/data/x2s5823/_info.yaml +++ b/data/x2s5823/_info.yaml @@ -28,6 +28,6 @@ probe-info: trigger: type: "channel" channel: 4 - alignment-offset: 601000 # ns + alignment-offset: 601 # us [TODO] Make this auto-magic delay: 100 # us diff --git a/data/x2s5824/_info.yaml b/data/x2s5824/_info.yaml index 877f557..7942dbe 100644 --- a/data/x2s5824/_info.yaml +++ b/data/x2s5824/_info.yaml @@ -29,7 +29,7 @@ probe-info: trigger: # Redundant? type: "channel" channel: 4 - alignment-offset: 499500 # ns + alignment-offset: 601 # us [TODO] Make this auto-magic delay: 100 # us diff --git a/data/x2s5827/_info.yaml b/data/x2s5827/_info.yaml index 8fbadb6..0c1685c 100644 --- a/data/x2s5827/_info.yaml +++ b/data/x2s5827/_info.yaml @@ -30,7 +30,7 @@ probe-info: trigger: # Redundant? type: "channel" channel: 4 - alignment-offset: 499500 # ns + alignment-offset: 601 # us [TODO] Make this auto-magic delay: 100 # us diff --git a/main.py b/main.py index 15ec95e..e066b25 100644 --- a/main.py +++ b/main.py @@ -19,13 +19,14 @@ folders = ["./images"] for folder in folders: if not os.path.isdir(folder): os.mkdir(folder) -# Load Data +# Data Paths DATA_PATH = "./data" DATA_INFO = "_info.yaml" -PCB_INFO_FILE = "./pcb-info.yaml" +TUNNEL_INFO_FILE = "./tunnel-info.yaml" +SAMPLES_TO_AVG = 500 -with open(PCB_INFO_FILE, 'r') as file: - PCB_INFO = yaml.safe_load(file) +with open(TUNNEL_INFO_FILE, 'r') as file: + TUNNEL_INFO = yaml.safe_load(file) data_to_load = [ "x2s5823", @@ -33,32 +34,39 @@ data_to_load = [ "x2s5827" ] -data = {} - -for dp in data_to_load: - data_path = f"{DATA_PATH}/{dp}/" - data_info_path = data_path + DATA_INFO - if not os.path.exists(data_info_path): - print(f"[ERR] Could not find data info file: '{data_info_path}'") - print(f"[WARN] Not Loading Data '{dp}'") - continue - - with open(data_info_path, 'r') as file: - # Load data info (Cal) - dataInfo = yaml.safe_load(file) +# ==== Data Loading & Processing ==== +def load_data(data_to_load: list[str]) -> dict: + data = {} + for dp in data_to_load: + data_path = f"{DATA_PATH}/{dp}/" + data_info_path = data_path + DATA_INFO + if not os.path.exists(data_info_path): + print(f"[ERR] Could not find data info file: '{data_info_path}'") + print(f"[WARN] Not Loading Data '{dp}'") + continue + + # Load Shot Data Info YAML File (Cal) + with open(data_info_path, 'r') as file: + dataInfo = yaml.safe_load(file) + + # Grab the shot name x2_shot = dataInfo["shot-info"]["name"] - + + # Load Raw Data + # TDMS File (X2 DAQ Data) x2_tdms_data = TdmsFile.read(data_path + dataInfo["shot-info"]['tdms'], raw_timestamps=True) x2_channels = x2_tdms_data.groups()[0].channels() - + x2_channel_names = tuple(c.name for c in x2_channels) + + # Scope info _if it exists_ if dataInfo["probe-info"]["data-record"]["type"] == "scope": scope_data_path = data_path + dataInfo["probe-info"]["data-record"]["data"] - scope_config_path = data_path + dataInfo["probe-info"]["data-record"]["config"] + scope_config_path = data_path + dataInfo["probe-info"]["data-record"]["config"] # [TODO] Read this file - # Generate Headers + # Generate Data Headers - This could be better with open(scope_data_path, 'r') as dfile: scope_header = [] - + header_lines = [] for i, line in enumerate(dfile): if i > 1: break @@ -72,64 +80,100 @@ for dp in data_to_load: outStr = f"{name} [{header_lines[1][i][0]}]" else: outStr = f"{name} [{header_lines[1][i]}]" - + scope_header.append(outStr) - - #scope_data = pd.read_csv(scope_data_path, names=scope_header, skiprows=2) + + # Load the Scope CSV Data scope_data = np.loadtxt(scope_data_path, delimiter=',', skiprows=2) + + # Build a data object (this could be cached - or partially cached if I was clever enough) + # Raw Data is always added - processing comes after data[x2_shot] = { "info": dataInfo, - "probe_headers": scope_header, - "probes": scope_data, - "x2": x2_channels, - "x2-tdms": x2_tdms_data + "shot_time": np.datetime64(f"{dataInfo["date"]}T{dataInfo["time"]}"), + "raw-data":{ + "probe_headers": scope_header, + "probes": scope_data, + "x2": x2_channels, + "x2-channels": x2_channel_names, + "x2-tdms": x2_tdms_data + }, + "time": { + "x2": None, + "trigger_index": None + }, + "data": { + "x2": {} # Only pop channels with a voltage scale in ./tunnel-info.yaml + } } + + # === Process the data === + # Generate X2 time arrays + time_data = x2_channels[0] + second_fractions = np.array(time_data[:].second_fractions, dtype=int) # 2^-64 ths of a second + x2_time_seconds = (second_fractions - second_fractions[0]) * (2**(-64)) # 0 time data and convert to seconds + x2_time_us = x2_time_seconds * 1000 # Scale to ms + + # --- Un Scale Data --- + for channel, vScale in TUNNEL_INFO["volt-scale"].items(): + # Get the channel index from its name + chIndex = x2_channel_names.index(channel) + + # Calculate the average noise offset + avg_noise = x2_channels[chIndex][0:SAMPLES_TO_AVG].mean() + + # Save the channel data + data[x2_shot]["data"]["x2"][channel] = (x2_channels[chIndex][:] - avg_noise) * vScale + + # Process Trigger Info + trigger_volts = data[x2_shot]["data"]["x2"]["trigbox"] # Use a mean to offset + x2_trigger_index = np.where(trigger_volts > 1)[0][0] + x2_trigger_time = x2_time_us[x2_trigger_index] + + # Add the time data + data[x2_shot]["time"] = { + "x2": x2_time_us, + "trigger_index": x2_trigger_index + } + + + # Scope timing _if it exists_ + if dataInfo["probe-info"]["data-record"]["type"] == "scope": + trigger_info = dataInfo["probe-info"]["data-record"]["trigger"] # Get the scope trigger info + + scope_time = (scope_data[:, 0] - scope_data[0, 0]) * 1000 # to us + scope_time -= trigger_info["alignment-offset"] # manual offset delay + scope_time += trigger_info["delay"] # us delay from the actual trigger signal to the scope received trigger + + # Trigger Alignment + scope_trigger_volts = (scope_data[:, 3] - scope_data[0:SAMPLES_TO_AVG, 3].mean()) # Use a mean here too + scope_trigger_index = np.where(scope_trigger_volts > 1)[0][0] + scope_trigger_time = scope_time[scope_trigger_index] + + scope_alignment = x2_trigger_time - scope_trigger_time + + scope_time += scope_alignment + + data[x2_shot]["time"]["scope"] = scope_time + data[x2_shot]["time"]["scope-offset"] = scope_alignment + + data[x2_shot]["data"]["scope"] = {} + for i, header in enumerate(scope_header): + if i == 0: continue # Don't record time + data[x2_shot]["data"]["scope"][header] = scope_data[i] + + + # Return the data & the successfully loaded data keys + return data, tuple(data.keys()) -loaded_data = list(data.keys()) +data, loaded_data = load_data(data_to_load) print("Loaded Data") -def process_data(gData: dict): - #x2_time = (gData["x2"][0][:] - gData["x2"][0][0]).astype('timedelta64[ns]') # Convert x2 to timedelta64[ns] - - time_data = data[loaded_data[0]]["x2"][0] - second_fractions = np.array(time_data[:].second_fractions, dtype=int) - seconds = (second_fractions - second_fractions[0]) * (2**(-64)) - ns_seconds = seconds * 1E9 - x2_time = ns_seconds - - trigger_info = gData["info"]["probe-info"]["data-record"]["trigger"] # Get the scope trigger info - - # Convert the scope times into timedelta64 & apply config offsets & delays - #scope_time = np.array([ pd.Timedelta(t, 's').to_numpy() for t in (gData["probes"][:, 0] - gData["probes"][0, 0])]) - #scope_time -= np.timedelta64(trigger_info["alignment-offset"], 'ns') - #scope_time += np.timedelta64(trigger_info["delay"], 'us') - - scope_time = (gData["probes"][:, 0] - gData["probes"][0, 0]) * 1E9 # to ns - scope_time -= trigger_info["alignment-offset"] - scope_time += trigger_info["delay"] * 1000 # us -> ns - - - start_timestamp = np.datetime64(f"{gData["info"]["date"]}T{gData["info"]["time"]}") - - # start_time = 0 - # x2_timesteps = np.array([0 for _ in x2_time]) - - # for i, dt in enumerate(x2_time): - # dt = dt.astype("int") - # if i == 0: - # x2_timesteps[i] = start_time + dt # should be 0 - # else: - # x2_timesteps[i] = x2_timesteps[i-1] + dt - - # test = x2_time.cumsum() - - return x2_time, scope_time - +#[TODO] Refactor def genGraph(gData: dict, showPlot: bool = True): - x2_time, scope_time = process_data(gData) - + graphData = { "title": f"Shock response Time\nFor {gData['info']['long_name']}", "xLabel": "Time (ns)", @@ -173,22 +217,19 @@ def genGraph(gData: dict, showPlot: bool = True): makeGraph(graphData, doProgramBlock=False, showPlot=showPlot, figSavePath="./images/{0}.png") + + #print("Graphing showPlot=showPlot, Data") -genGraph(data[loaded_data[0]], showPlot=False) -genGraph(data[loaded_data[1]], showPlot=False) +#genGraph(data[loaded_data[0]], showPlot=False) +#genGraph(data[loaded_data[1]], showPlot=False) -# Try to process things -gData = data[loaded_data[0]] -x2_time, scope_time = process_data(gData) -#time = (gData["x2"][0][:] - gData["x2"][0][0]) +#x2_out = canny_shock_finder(x2_time, (gData["raw-data"]["x2"][16][:] - gData["raw-data"]["x2"][16][0])) -x2_out = canny_shock_finder(x2_time, (gData["x2"][4][:] - gData["x2"][4][0]) * 0.0148) +#print(x2_out) -print(x2_out) - -# This forces matplotlib to hang untill I tell it to close all windows +# This forces matplotlib to hang until I tell it to close all windows pltKeyClose() print("Done") diff --git a/pcb-info.yaml b/tunnel-info.yaml similarity index 89% rename from pcb-info.yaml rename to tunnel-info.yaml index 6ffcddc..0e01073 100644 --- a/pcb-info.yaml +++ b/tunnel-info.yaml @@ -32,3 +32,6 @@ volt-scale: at4: 0.01435 #V/kPa at5: 0.01447 #V/kPa at6: 0.01442 #V/kPa + + trigbox: 0.001 #V / mV + trigbox_delay: 0.001 #V / mV