# Cal Wing (c.wing@uq.net.au) - Oct 2024 # Thesis Graphing import os import numpy as np import pandas as pd import yaml from nptdms import TdmsFile from makeGraph import makeGraph, pltKeyClose, UQ_COLOURS as UQC from canny_shock_finder import canny_shock_finder # Folder correction # Make sure the relevant folders folder exists folders = ["./images"] for folder in folders: if not os.path.isdir(folder): os.mkdir(folder) # Data Paths DATA_PATH = "./data" DATA_INFO = "_info.yaml" TUNNEL_INFO_FILE = "./tunnel-info.yaml" SAMPLES_TO_AVG = 500 CANNY_TIME_OFFSET = 50 #us with open(TUNNEL_INFO_FILE, 'r') as file: TUNNEL_INFO = yaml.safe_load(file) data_to_load = [ "x2s5823", "x2s5824", "x2s5827", "x2s5829", "x2s5830", "x2s5831", "x2s5832" ] # ==== Uncerts ==== # Taken from DOI: 10.1007/s00193-017-0763-3 (Implementation of a state-to-state analytical framework for the calculation of expansion tube flow properties) UNCERTS = TUNNEL_INFO["uncertainties"] def deltaX(delta_x_1: float, delta_x_2: float): return np.sqrt(np.pow(delta_x_1, 2) + np.pow(delta_x_2, 2)) def deltaT(delta_t_1: float, delta_t_2: float, delta_t_sr: float): return np.sqrt(np.pow(delta_t_1, 2) + np.pow(delta_t_2, 2) + np.pow(delta_t_sr, 2)) def deltaVs(V: float, dx: float, dt: float, delta_x: tuple[float, float], delta_t: tuple[float, float, float]): return V * np.sqrt(np.pow(deltaX(*delta_x) / dx, 2) + np.pow(deltaT(*delta_t) / dt, 2)) # ==== Data Loading & Processing ==== def load_data(data_path: str, data={}) -> dict: data_info_path = data_path + DATA_INFO if not os.path.exists(data_info_path): print(f"[ERR] Could not find data info file: '{data_info_path}'") print(f"[WARN] Not Loading Data '{data_path}'") return None # Load Shot Data Info YAML File (Cal) with open(data_info_path, 'r') as file: dataInfo = yaml.safe_load(file) # Grab the shot name x2_shot = dataInfo["shot-info"]["name"] # Update shot-info values to use the name dataInfo["shot-info"]["tdms"] = dataInfo["shot-info"]["tdms"].format(x2_shot) dataInfo["shot-info"]["config"] = dataInfo["shot-info"]["config"].format(x2_shot) dataInfo["shot-info"]["info"] = dataInfo["shot-info"]["info"].format(x2_shot) # Load Raw Data # TDMS File (X2 DAQ Data) x2_tdms_data = TdmsFile.read(data_path + dataInfo["shot-info"]['tdms'], raw_timestamps=True) x2_channels = x2_tdms_data.groups()[0].channels() x2_channel_names = tuple(c.name for c in x2_channels) data_locs = [dr["type"] for dr in dataInfo["probe-info"]["data-records"]] # Scope info _if it exists_ if "scope" in data_locs: scope_data_info = dataInfo["probe-info"]["data-records"][data_locs.index("scope")] scope_data_path = data_path + scope_data_info["data"] scope_config_path = data_path + scope_data_info["config"] # [TODO] Read this file # Generate Data Headers - This could be better with open(scope_data_path, 'r') as dfile: scope_header = [] header_lines = [] for i, line in enumerate(dfile): if i > 1: break header_lines.append(line.strip().split(",")) for i, name in enumerate(header_lines[0]): if name == "x-axis": name = "Time" if header_lines[1][i] in ["second", "Volt"]: outStr = f"{name} [{header_lines[1][i][0]}]" else: outStr = f"{name} [{header_lines[1][i]}]" scope_header.append(outStr) # Load the Scope CSV Data scope_data = np.loadtxt(scope_data_path, delimiter=',', skiprows=2) # Build a data object (this could be cached - or partially cached if I was clever enough) # Raw Data is always added - processing comes after data[x2_shot] = { "info": dataInfo, "shot_time": np.datetime64(f"{dataInfo['date']}T{dataInfo['time']}"), "raw-data":{ "probe_headers": scope_header, "probes": scope_data, "x2": x2_channels, "x2-channels": x2_channel_names, "x2-tdms": x2_tdms_data }, "time": { "x2": None, "probes": None, # This may be x2 but may not - ie a scope was used "trigger_index": None, "probe_uncert": None, #s }, "data": { "x2": {}, # Only pop channels with a voltage scale in ./tunnel-info.yaml "probes": [[None], [None]] # Save probe data in volts - [G1, G2] }, "shock-speed": {} # Note all in us } # === Process the data === # Generate X2 time arrays time_data = x2_channels[0] ns_time = time_data[:].as_datetime64('ns') x2_time_seconds = (ns_time - ns_time[0]) # timedelta64[ns] x2_time_us = x2_time_seconds.astype("float64") / 1000 # Scale to us #second_fractions = np.array(time_data[:].second_fractions, dtype=int) # 2^-64 ths of a second #x2_time_seconds = (second_fractions - second_fractions[0]) / (2**(-64)) # 0 time data and convert to seconds #x2_time_us = x2_time_seconds * 1000 # Scale to us # --- Un Scale Data --- for channel, vScale in TUNNEL_INFO["volt-scale"].items(): # Get the channel index from its name chIndex = x2_channel_names.index(channel) # Calculate the average noise offset avg_noise = x2_channels[chIndex][0:SAMPLES_TO_AVG].mean() # Save the channel data data[x2_shot]["data"]["x2"][channel] = (x2_channels[chIndex][:] - avg_noise) * vScale # Process Trigger Info trigger_volts = data[x2_shot]["data"]["x2"]["trigbox"] # Use a mean to offset x2_trigger_index = np.where(trigger_volts > 1)[0][0] x2_trigger_time = x2_time_us[x2_trigger_index] # Add the time data data[x2_shot]["time"] = { "x2": x2_time_us, "trigger_index": x2_trigger_index, "probes": x2_time_us, # Until otherwise overridden - probe time is x2 time } # Scope timing _if it exists_ if "scope" in data_locs: scope_data_info = dataInfo["probe-info"]["data-records"][data_locs.index("scope")] trigger_info = scope_data_info["trigger"] # Get the scope trigger info # Calc the scope time & apply any manual offsets scope_time = (scope_data[:, 0] - scope_data[0, 0]) * 1e6 # to us scope_time -= trigger_info["alignment-offset"] # manual offset delay # Trigger Alignment scope_trigger_volts = (scope_data[:, 3] - scope_data[0:SAMPLES_TO_AVG, 3].mean()) # Use a mean here too scope_trigger_index = np.where(scope_trigger_volts > 1)[0][0] scope_trigger_time = scope_time[scope_trigger_index] scope_alignment = x2_trigger_time - scope_trigger_time scope_time += scope_alignment # Offset any trigger delays scope_time += trigger_info["delay"] # us delay from the actual trigger signal to the scope received trigger data[x2_shot]["time"]["scope"] = scope_time data[x2_shot]["time"]["scope-offset"] = scope_alignment data[x2_shot]["data"]["scope"] = {} for i, header in enumerate(scope_header): if i == 0: continue # Don't record time # Python reference so its the same object ref = scope_data[:, i] data[x2_shot]["data"]["scope"][i] = ref data[x2_shot]["data"]["scope"][header] = ref # Save Probe Data if "scope" in data_locs: data[x2_shot]["data"]["probes"] = [data[x2_shot]["data"]["scope"][1], data[x2_shot]["data"]["scope"][2]] data[x2_shot]["time"]["probes"] = data[x2_shot]["time"]["scope"] data[x2_shot]["time"]["probe_uncert"] = scope_data_info["time-uncert"] # Find Shock Times # X2 - Canning Edge data[x2_shot]["shock-point"] = {} cArgs = dataInfo["pcb-canny"] for i, ref in enumerate(dataInfo["pcb-refs"]): refData = data[x2_shot]["data"]["x2"][ref] if i in range(len(cArgs)): sigma = cArgs[i]["sigma"] post_sup_thresh = cArgs[i]["post_pres"] else: sigma = cArgs[-1]["sigma"] post_sup_thresh = cArgs[-1]["post_pres"] first_value, first_value_uncertainty, _, _ = canny_shock_finder(x2_time_us, refData, sigma=sigma, post_suppression_threshold=post_sup_thresh, plot=False, print_func=None) shock_point = np.where(x2_time_us >= first_value)[0][0] # [BUG] Seems to give n+1 data[x2_shot]["shock-point"][ref] = shock_point, first_value, first_value_uncertainty # ---- Gauge Canning Edge ---- for i, probe in enumerate(dataInfo["probe-info"]["locations"]): probeCh1 = data[x2_shot]["data"]["probes"][0] probeCh2 = data[x2_shot]["data"]["probes"][1] # Get the canny-args cArgs = dataInfo["canny-args"] doCannyPlot = False if i in range(len(cArgs)): sigma = cArgs[i]["sigma"] post_sup_thresh = cArgs[i]["post_pres"] else: sigma = cArgs[-1]["sigma"] post_sup_thresh = cArgs[-1]["post_pres"] # If this _isn't_ the first probe then apply a time offset if i > 0: privPoint = dataInfo["probe-info"]["locations"][i-1] time_offset = data[x2_shot]["shock-point"][f"{privPoint}-g1"][1] + CANNY_TIME_OFFSET else: time_offset = None # Find G1 Shock Time if 1 in dataInfo["probe-info"]["gauges"]: first_value, first_value_uncertainty, _, _ = canny_shock_finder(scope_time, probeCh1, sigma=sigma, post_suppression_threshold=post_sup_thresh, plot=doCannyPlot, start_time=time_offset, print_func=None) if first_value is None: print(f"[ERROR] {x2_shot} - {probe}-g1 could not be detected using: Sigma = {sigma}, post_suppression_threshold = {post_sup_thresh}") raise ValueError(f"{probe}-g1 not detected") shock_point = np.where(scope_time >= first_value)[0][0] # [BUG] Seems to give n+1 data[x2_shot]["shock-point"][f"{probe}-g1"] = shock_point, first_value, first_value_uncertainty if 2 in dataInfo["probe-info"]["gauges"]: # Do the same for G2 if i > 0: time_offset = data[x2_shot]["shock-point"][f"{privPoint}-g2"][1] + CANNY_TIME_OFFSET # Find G2 Shock Time first_value, first_value_uncertainty, _, _ = canny_shock_finder(scope_time, probeCh2, sigma=sigma, post_suppression_threshold=post_sup_thresh, plot=doCannyPlot, start_time=time_offset, print_func=None) if first_value is None: print(f"[ERROR] {x2_shot} - {probe}-g2 could not be detected using: Sigma = {sigma}, post_suppression_threshold = {post_sup_thresh}") raise ValueError(f"{probe}-g2 not detected") shock_point = np.where(scope_time >= first_value)[0][0] # [BUG] Seems to give n+1 data[x2_shot]["shock-point"][f"{probe}-g2"] = shock_point, first_value, first_value_uncertainty # Calculate Shock Speeds print("="*30, x2_shot, "="*30) print("--", dataInfo["long_name"], "--") for i, refProbe in enumerate(dataInfo["pcb-refs"]): if i == 0: continue p1_time = data[x2_shot]["shock-point"][refProbe][1] / 1e6 # Convert to seconds p2_time = data[x2_shot]["shock-point"][dataInfo["pcb-refs"][i-1]][1] / 1e6 # Convert to seconds p2p_dist = abs(TUNNEL_INFO["distance"][refProbe] - TUNNEL_INFO["distance"][dataInfo["pcb-refs"][i-1]]) / 1000 # convert to m p2p_time = abs(p2_time - p1_time) probe_velocity = p2p_dist / p2p_time # m/s p1_time_uncert = data[x2_shot]["shock-point"][dataInfo["pcb-refs"][i-1]][2] / 1e6 # Convert to seconds p2_time_uncert = data[x2_shot]["shock-point"][refProbe][2] / 1e6 # Convert to seconds uncert = deltaVs(probe_velocity, p2p_dist, p2p_time, (UNCERTS["probe-dist"][refProbe], UNCERTS["probe-dist"][dataInfo["pcb-refs"][i-1]]), (p1_time_uncert, p2_time_uncert, UNCERTS["time"]["x2-daq"])) print(f"{dataInfo['pcb-refs'][i-1]}-{refProbe} Measured a shock speed of {probe_velocity:.2f} +/- {uncert:.2f} m/s ({probe_velocity/1000:.2f} +/- {uncert/1000:.2f} km/s [{uncert/probe_velocity * 100 :.2f}%])") data[x2_shot]["shock-speed"][f"{dataInfo['pcb-refs'][i-1]}-{refProbe}"] = probe_velocity, uncert, True # Speed, Ref print() for probe in dataInfo["probe-info"]["locations"]: if f"{probe}-g1" in data[x2_shot]["shock-point"] and f"{probe}-g2" in data[x2_shot]["shock-point"]: g1_time = data[x2_shot]["shock-point"][f"{probe}-g1"][1] / 1e6 # Convert to seconds g2_time = data[x2_shot]["shock-point"][f"{probe}-g2"][1] / 1e6 # Convert to seconds c2c_dist = dataInfo["probe-info"]["c2c"] / 1000 # convert to m c2c_time = abs(g2_time - g1_time) probe_velocity = c2c_dist / c2c_time # m/s g1_time_uncert = data[x2_shot]["shock-point"][f"{probe}-g1"][2] / 1e6 # Convert to seconds g2_time_uncert = data[x2_shot]["shock-point"][f"{probe}-g2"][2] / 1e6 # Convert to seconds uncert = deltaVs(probe_velocity, p2p_dist, p2p_time, (0.05/1000, 0.05/1000), (g1_time_uncert, g2_time_uncert, data[x2_shot]["time"]["probe_uncert"])) print(f"{probe} Measured a shock speed of {probe_velocity:.2f} +/- {uncert:.2f} m/s ({probe_velocity/1000:.2f} +/- {uncert/1000:.2f} km/s)") data[x2_shot]["shock-speed"][probe] = probe_velocity, uncert, False # Speed, Ref # m/s else: print(f"Unable to calculate probe velocity, only have one gauge: {f'{probe}-g2' if f'{probe}-g2' in data[x2_shot]['shock-point'] else f'{probe}-g1'}") if len(dataInfo["probe-info"]["locations"]) > 1: for i in range(len(dataInfo["probe-info"]["locations"]) - 1): probe_locs = dataInfo["probe-info"]["locations"] p2p_dist = (TUNNEL_INFO["distance"][probe_locs[1]] - TUNNEL_INFO["distance"][probe_locs[0]]) / 1000 # convert to m if f"{probe_locs[i]}-g1" in data[x2_shot]["shock-point"] and f"{probe_locs[i+1]}-g1" in data[x2_shot]["shock-point"]: p1_g1_time = data[x2_shot]["shock-point"][f"{probe_locs[i]}-g1"][1] / 1e6 # Convert to seconds p2_g1_time = data[x2_shot]["shock-point"][f"{probe_locs[i+1]}-g1"][1] / 1e6 # Convert to seconds p2p_time = abs(p2_g1_time - p1_g1_time) p2p_1 = p2p_dist / p2p_time # m/s p1_time_uncert = data[x2_shot]["shock-point"][f"{probe_locs[i]}-g1"][2] / 1e6 # Convert to seconds p2_time_uncert = data[x2_shot]["shock-point"][f"{probe_locs[i+1]}-g1"][2] / 1e6 # Convert to seconds uncert = deltaVs(p2p_1, p2p_dist, p2p_time, (UNCERTS["probe-dist"][probe_locs[i]], UNCERTS["probe-dist"][probe_locs[i+1]]), (p1_time_uncert, p2_time_uncert, data[x2_shot]["time"]["probe_uncert"])) print(f"{probe_locs[i]}-{probe_locs[i + 1]} - G1 - Measured a shock speed of {p2p_1:.2f} +/- {uncert:.2f} m/s ({p2p_1/1000:.2f} +/- {uncert/1000:.2f} [{uncert/p2p_1 * 100:.2f}%] km/s)") data[x2_shot]["shock-speed"][f"{probe_locs[i]}-{probe_locs[i + 1]}-g1"] = p2p_1, uncert, False # Speed, Ref if f"{probe_locs[i]}-g2" in data[x2_shot]["shock-point"] and f"{probe_locs[i+1]}-g2" in data[x2_shot]["shock-point"]: p1_g2_time = data[x2_shot]["shock-point"][f"{probe_locs[i]}-g2"][1] / 1e6 # Convert to seconds p2_g2_time = data[x2_shot]["shock-point"][f"{probe_locs[i+1]}-g2"][1] / 1e6 # Convert to seconds p2p_time = abs(p2_g2_time - p1_g2_time) p2p_2 = p2p_dist / p2p_time # m/s p1_time_uncert = data[x2_shot]["shock-point"][f"{probe_locs[i]}-g2"][2] / 1e6 # Convert to seconds p2_time_uncert = data[x2_shot]["shock-point"][f"{probe_locs[i+1]}-g2"][2] / 1e6 # Convert to seconds uncert = deltaVs(p2p_2, p2p_dist, p2p_time, (UNCERTS["probe-dist"][probe_locs[i]], UNCERTS["probe-dist"][probe_locs[i+1]]), (p1_time_uncert, p2_time_uncert, data[x2_shot]["time"]["probe_uncert"])) print(f"{probe_locs[i]}-{probe_locs[i + 1]} - G2 - Measured a shock speed of {p2p_2:.2f} +/- {uncert:.2f} m/s ({p2p_2/1000:.2f} +/- {uncert/1000:.2f} [{uncert/p2p_2 * 100:.2f}%] km/s)") data[x2_shot]["shock-speed"][f"{probe_locs[i]}-{probe_locs[i + 1]}-g2"] = p2p_2, uncert, False # Speed, Ref print() # Return the data & the successfully loaded data keys return data #, tuple(data.keys()) data = {} for dp in data_to_load: pdp = f"{DATA_PATH}/{dp}/" load_data(pdp, data) loaded_data = tuple(data.keys()) print("Loaded Data") #[TODO] Refactor def genGraph(gData: dict, showPlot: bool = True, doLimits: bool = True, forcePlots: bool = False, addShockInfo: bool = True): graphData = { "title": f"Shock Response Time\nFor {gData['info']['long_name']}", "xLabel": "Time ($\\mu$s)", "yLabel": "Voltage Reading (V)", "grid": True, "figSize": (9, 6.8), #(8,6.5), "ledgLoc": 'upper left', "yLim": (-1.5, 11 if addShockInfo else 4), "plots": [] } #if forcePlots or not doLimits: graphData["title"] += "\n" #if forcePlots: graphData["title"] += "(All Data Shown)" #if not doLimits: graphData["title"] += () + "Full Re" lims = [] for label, d in [("1 [V]", "Gauge 1"),("2 [V]", "Gauge 2")]: #, ("4 [V]", "Gauge Trigger")]: graphData["plots"].append({ "x": gData["time"]["scope"], "y": gData["data"]["scope"][label], "label": d, "args":{"zorder":1} }) for _, probe in enumerate(gData["info"]["probe-info"]["locations"]): if f"{probe}-g1" in gData["shock-point"]: graphData["plots"].append({ "type": "axvLine", "x": gData["shock-point"][f"{probe}-g1"][1],#[i], "label": f"{probe}-Gauge 1 - Shock Point {gData['shock-point'][f'{probe}-g1'][1]:.2f}$\\mu$s", "colour": UQC["purple"].lighten(0.5), "args":{"zorder":2, "linestyle":"--", "alpha":0.5} }) lims.append(gData["shock-point"][f"{probe}-g1"][1]) if f"{probe}-g2" in gData["shock-point"]: graphData["plots"].append({ "type": "axvLine", "x": gData["shock-point"][f"{probe}-g2"][1],#[i], "label": f"{probe}-Gauge 2 - Shock Point {gData['shock-point'][f'{probe}-g2'][1]:.2f}$\\mu$s", "colour": UQC["purple"].lighten(0.5), "args":{"zorder":2, "linestyle":"--", "alpha":0.5} }) lims.append(gData["shock-point"][f"{probe}-g2"][1]) for label in gData["info"]["pcb-refs"]: # + ["trigbox"]: if not forcePlots and label in gData["info"]["no-graph"]: continue graphData["plots"].append({ "x": gData["time"]["x2"], "y": gData["data"]["x2"][label], "label": label }) if label in gData["info"]["pcb-refs"]: graphData["plots"].append({ "type": "axvLine", "x": gData["shock-point"][label][1], "label": f"{label} - Shock Point {gData['shock-point'][label][1]:.2f}$\\mu$s", "colour": "gray", "args":{"zorder":2, "linestyle":"--", "alpha":0.5} }) lims.append(gData["shock-point"][label][1]) # [TODO this but better] if addShockInfo: probeText = "" flag = False for shock_speed_loc in gData["shock-speed"]: if not flag and not gData["shock-speed"][shock_speed_loc][2]: flag = True probeText += "\n" + "-"*50 probeText += "\n" #probeText += "\\definecolor{my_gray}{rbg}{0.6, 0.5803921568627451, 0.5647058823529412}\\textcolor{my_gray}{" if gData["shock-speed"][shock_speed_loc][1] else "" probeText += f"{shock_speed_loc} - {gData['shock-speed'][shock_speed_loc][0]/1000:.2f} $\\pm${gData['shock-speed'][shock_speed_loc][1]/1000:.2f} [{gData['shock-speed'][shock_speed_loc][1]/gData['shock-speed'][shock_speed_loc][0]*100:.2f}%] km/s" #probeText += "}" if gData["shock-speed"][shock_speed_loc][1] else "" graphData["plots"].append({ "type": "text", "text": f"Measured Shock Speeds {probeText}", "align": ("top", "right"), "alpha": 0.75, "x": 0.94, #if len(gData["info"]["probe-info"]["locations"]) < 3 else 0.885, "y": 0.94 }) if doLimits and len(lims) > 1: OFFSET = 10 #if not forcePlots else 50 graphData["xLim"] = (float(min(lims) - OFFSET), float(max(lims) + OFFSET)) makeGraph(graphData, doProgramBlock=False, showPlot=showPlot, figSavePath=f"./images/{gData['info']['shot-info']['name']}{'-all' if forcePlots else ''}{'-clipped' if doLimits else ''}.png") #figSavePath=f"./images/{{0}}{"-noLims" if not doLimits else ""}.png") #print("Graphing Data") for shot in loaded_data: #print(data[shot]['info']['long_name'].rsplit("\n", 1)[-1]) genGraph(data[shot], showPlot=False, addShockInfo=False) genGraph(data[shot], showPlot=False, forcePlots=True) # This forces matplotlib to hang until I tell it to close all windows pltKeyClose() print("Done")