Thesis/main.py
2024-10-22 20:23:02 +10:00

490 lines
21 KiB
Python

# Cal Wing (c.wing@uq.net.au) - Oct 2024
# Thesis Graphing
import os
import numpy as np
import pandas as pd
import yaml
from nptdms import TdmsFile
from makeGraph import makeGraph, pltKeyClose, UQ_COLOURS as UQC
from canny_shock_finder import canny_shock_finder
# Folder correction
# Make sure the relevant folders folder exists
folders = ["./images"]
for folder in folders:
if not os.path.isdir(folder): os.mkdir(folder)
# Data Paths
DATA_PATH = "./data"
DATA_INFO = "_info.yaml"
TUNNEL_INFO_FILE = "./tunnel-info.yaml"
SAMPLES_TO_AVG = 500
CANNY_TIME_OFFSET = 50 #us
with open(TUNNEL_INFO_FILE, 'r') as file:
TUNNEL_INFO = yaml.safe_load(file)
data_to_load = [
"x2s5823",
"x2s5824",
"x2s5827",
"x2s5829",
"x2s5830",
"x2s5831",
"x2s5832"
]
# ==== Uncerts ====
# Taken from DOI: 10.1007/s00193-017-0763-3 (Implementation of a state-to-state analytical framework for the calculation of expansion tube flow properties)
UNCERTS = TUNNEL_INFO["uncertainties"]
def deltaX(delta_x_1: float, delta_x_2: float):
return np.sqrt(np.pow(delta_x_1, 2) + np.pow(delta_x_2, 2))
def deltaT(delta_t_1: float, delta_t_2: float, delta_t_sr: float):
return np.sqrt(np.pow(delta_t_1, 2) + np.pow(delta_t_2, 2) + np.pow(delta_t_sr, 2))
def deltaVs(V: float, dx: float, dt: float, delta_x: tuple[float, float], delta_t: tuple[float, float, float]):
return V * np.sqrt(np.pow(deltaX(*delta_x) / dx, 2) + np.pow(deltaT(*delta_t) / dt, 2))
# ==== Data Loading & Processing ====
def load_data(data_path: str, data={}) -> dict:
data_info_path = data_path + DATA_INFO
if not os.path.exists(data_info_path):
print(f"[ERR] Could not find data info file: '{data_info_path}'")
print(f"[WARN] Not Loading Data '{data_path}'")
return None
# Load Shot Data Info YAML File (Cal)
with open(data_info_path, 'r') as file:
dataInfo = yaml.safe_load(file)
# Grab the shot name
x2_shot = dataInfo["shot-info"]["name"]
# Update shot-info values to use the name
dataInfo["shot-info"]["tdms"] = dataInfo["shot-info"]["tdms"].format(x2_shot)
dataInfo["shot-info"]["config"] = dataInfo["shot-info"]["config"].format(x2_shot)
dataInfo["shot-info"]["info"] = dataInfo["shot-info"]["info"].format(x2_shot)
# Load Raw Data
# TDMS File (X2 DAQ Data)
x2_tdms_data = TdmsFile.read(data_path + dataInfo["shot-info"]['tdms'], raw_timestamps=True)
x2_channels = x2_tdms_data.groups()[0].channels()
x2_channel_names = tuple(c.name for c in x2_channels)
data_locs = [dr["type"] for dr in dataInfo["probe-info"]["data-records"]]
# Scope info _if it exists_
if "scope" in data_locs:
scope_data_info = dataInfo["probe-info"]["data-records"][data_locs.index("scope")]
scope_data_path = data_path + scope_data_info["data"]
scope_config_path = data_path + scope_data_info["config"] # [TODO] Read this file
# Generate Data Headers - This could be better
with open(scope_data_path, 'r') as dfile:
scope_header = []
header_lines = []
for i, line in enumerate(dfile):
if i > 1: break
header_lines.append(line.strip().split(","))
for i, name in enumerate(header_lines[0]):
if name == "x-axis":
name = "Time"
if header_lines[1][i] in ["second", "Volt"]:
outStr = f"{name} [{header_lines[1][i][0]}]"
else:
outStr = f"{name} [{header_lines[1][i]}]"
scope_header.append(outStr)
# Load the Scope CSV Data
scope_data = np.loadtxt(scope_data_path, delimiter=',', skiprows=2)
# Build a data object (this could be cached - or partially cached if I was clever enough)
# Raw Data is always added - processing comes after
data[x2_shot] = {
"info": dataInfo,
"shot_time": np.datetime64(f"{dataInfo["date"]}T{dataInfo["time"]}"),
"raw-data":{
"probe_headers": scope_header,
"probes": scope_data,
"x2": x2_channels,
"x2-channels": x2_channel_names,
"x2-tdms": x2_tdms_data
},
"time": {
"x2": None,
"probes": None, # This may be x2 but may not - ie a scope was used
"trigger_index": None,
"probe_uncert": None, #s
},
"data": {
"x2": {}, # Only pop channels with a voltage scale in ./tunnel-info.yaml
"probes": [[None], [None]] # Save probe data in volts - [G1, G2]
},
"shock-speed": {} # Note all in us
}
# === Process the data ===
# Generate X2 time arrays
time_data = x2_channels[0]
ns_time = time_data[:].as_datetime64('ns')
x2_time_seconds = (ns_time - ns_time[0]) # timedelta64[ns]
x2_time_us = x2_time_seconds.astype("float64") / 1000 # Scale to us
#second_fractions = np.array(time_data[:].second_fractions, dtype=int) # 2^-64 ths of a second
#x2_time_seconds = (second_fractions - second_fractions[0]) / (2**(-64)) # 0 time data and convert to seconds
#x2_time_us = x2_time_seconds * 1000 # Scale to us
# --- Un Scale Data ---
for channel, vScale in TUNNEL_INFO["volt-scale"].items():
# Get the channel index from its name
chIndex = x2_channel_names.index(channel)
# Calculate the average noise offset
avg_noise = x2_channels[chIndex][0:SAMPLES_TO_AVG].mean()
# Save the channel data
data[x2_shot]["data"]["x2"][channel] = (x2_channels[chIndex][:] - avg_noise) * vScale
# Process Trigger Info
trigger_volts = data[x2_shot]["data"]["x2"]["trigbox"] # Use a mean to offset
x2_trigger_index = np.where(trigger_volts > 1)[0][0]
x2_trigger_time = x2_time_us[x2_trigger_index]
# Add the time data
data[x2_shot]["time"] = {
"x2": x2_time_us,
"trigger_index": x2_trigger_index,
"probes": x2_time_us, # Until otherwise overridden - probe time is x2 time
}
# Scope timing _if it exists_
if "scope" in data_locs:
scope_data_info = dataInfo["probe-info"]["data-records"][data_locs.index("scope")]
trigger_info = scope_data_info["trigger"] # Get the scope trigger info
# Calc the scope time & apply any manual offsets
scope_time = (scope_data[:, 0] - scope_data[0, 0]) * 1e6 # to us
scope_time -= trigger_info["alignment-offset"] # manual offset delay
# Trigger Alignment
scope_trigger_volts = (scope_data[:, 3] - scope_data[0:SAMPLES_TO_AVG, 3].mean()) # Use a mean here too
scope_trigger_index = np.where(scope_trigger_volts > 1)[0][0]
scope_trigger_time = scope_time[scope_trigger_index]
scope_alignment = x2_trigger_time - scope_trigger_time
scope_time += scope_alignment
# Offset any trigger delays
scope_time += trigger_info["delay"] # us delay from the actual trigger signal to the scope received trigger
data[x2_shot]["time"]["scope"] = scope_time
data[x2_shot]["time"]["scope-offset"] = scope_alignment
data[x2_shot]["data"]["scope"] = {}
for i, header in enumerate(scope_header):
if i == 0: continue # Don't record time
# Python reference so its the same object
ref = scope_data[:, i]
data[x2_shot]["data"]["scope"][i] = ref
data[x2_shot]["data"]["scope"][header] = ref
# Save Probe Data
if "scope" in data_locs:
data[x2_shot]["data"]["probes"] = [data[x2_shot]["data"]["scope"][1], data[x2_shot]["data"]["scope"][2]]
data[x2_shot]["time"]["probes"] = data[x2_shot]["time"]["scope"]
data[x2_shot]["time"]["probe_uncert"] = scope_data_info["time-uncert"]
# Find Shock Times
# X2 - Canning Edge
data[x2_shot]["shock-point"] = {}
cArgs = dataInfo["pcb-canny"]
for i, ref in enumerate(dataInfo["pcb-refs"]):
refData = data[x2_shot]["data"]["x2"][ref]
if i in range(len(cArgs)):
sigma = cArgs[i]["sigma"]
post_sup_thresh = cArgs[i]["post_pres"]
else:
sigma = cArgs[-1]["sigma"]
post_sup_thresh = cArgs[-1]["post_pres"]
first_value, first_value_uncertainty, _, _ = canny_shock_finder(x2_time_us, refData, sigma=sigma, post_suppression_threshold=post_sup_thresh, plot=False, print_func=None)
shock_point = np.where(x2_time_us >= first_value)[0][0] # [BUG] Seems to give n+1
data[x2_shot]["shock-point"][ref] = shock_point, first_value, first_value_uncertainty
# ---- Gauge Canning Edge ----
for i, probe in enumerate(dataInfo["probe-info"]["locations"]):
probeCh1 = data[x2_shot]["data"]["probes"][0]
probeCh2 = data[x2_shot]["data"]["probes"][1]
# Get the canny-args
cArgs = dataInfo["canny-args"]
doCannyPlot = False
if i in range(len(cArgs)):
sigma = cArgs[i]["sigma"]
post_sup_thresh = cArgs[i]["post_pres"]
else:
sigma = cArgs[-1]["sigma"]
post_sup_thresh = cArgs[-1]["post_pres"]
# If this _isn't_ the first probe then apply a time offset
if i > 0:
privPoint = dataInfo["probe-info"]["locations"][i-1]
time_offset = data[x2_shot]["shock-point"][f"{privPoint}-g1"][1] + CANNY_TIME_OFFSET
else:
time_offset = None
# Find G1 Shock Time
if 1 in dataInfo["probe-info"]["gauges"]:
first_value, first_value_uncertainty, _, _ = canny_shock_finder(scope_time, probeCh1, sigma=sigma, post_suppression_threshold=post_sup_thresh, plot=doCannyPlot, start_time=time_offset, print_func=None)
if first_value is None:
print(f"[ERROR] {x2_shot} - {probe}-g1 could not be detected using: Sigma = {sigma}, post_suppression_threshold = {post_sup_thresh}")
raise ValueError(f"{probe}-g1 not detected")
shock_point = np.where(scope_time >= first_value)[0][0] # [BUG] Seems to give n+1
data[x2_shot]["shock-point"][f"{probe}-g1"] = shock_point, first_value, first_value_uncertainty
if 2 in dataInfo["probe-info"]["gauges"]:
# Do the same for G2
if i > 0:
time_offset = data[x2_shot]["shock-point"][f"{privPoint}-g2"][1] + CANNY_TIME_OFFSET
# Find G2 Shock Time
first_value, first_value_uncertainty, _, _ = canny_shock_finder(scope_time, probeCh2, sigma=sigma, post_suppression_threshold=post_sup_thresh, plot=doCannyPlot, start_time=time_offset, print_func=None)
if first_value is None:
print(f"[ERROR] {x2_shot} - {probe}-g2 could not be detected using: Sigma = {sigma}, post_suppression_threshold = {post_sup_thresh}")
raise ValueError(f"{probe}-g2 not detected")
shock_point = np.where(scope_time >= first_value)[0][0] # [BUG] Seems to give n+1
data[x2_shot]["shock-point"][f"{probe}-g2"] = shock_point, first_value, first_value_uncertainty
# Calculate Shock Speeds
print("="*30, x2_shot, "="*30)
print("--", dataInfo["long_name"], "--")
for i, refProbe in enumerate(dataInfo["pcb-refs"]):
if i == 0: continue
p1_time = data[x2_shot]["shock-point"][refProbe][1] / 1e6 # Convert to seconds
p2_time = data[x2_shot]["shock-point"][dataInfo["pcb-refs"][i-1]][1] / 1e6 # Convert to seconds
p2p_dist = abs(TUNNEL_INFO["distance"][refProbe] - TUNNEL_INFO["distance"][dataInfo["pcb-refs"][i-1]]) / 1000 # convert to m
p2p_time = abs(p2_time - p1_time)
probe_velocity = p2p_dist / p2p_time # m/s
p1_time_uncert = data[x2_shot]["shock-point"][dataInfo["pcb-refs"][i-1]][2] / 1e6 # Convert to seconds
p2_time_uncert = data[x2_shot]["shock-point"][refProbe][2] / 1e6 # Convert to seconds
uncert = deltaVs(probe_velocity, p2p_dist, p2p_time, (UNCERTS["probe-dist"][refProbe], UNCERTS["probe-dist"][dataInfo["pcb-refs"][i-1]]), (p1_time_uncert, p2_time_uncert, UNCERTS["time"]["x2-daq"]))
print(f"{dataInfo["pcb-refs"][i-1]}-{refProbe} Measured a shock speed of {probe_velocity:.2f} +/- {uncert:.2f} m/s ({probe_velocity/1000:.2f} +/- {uncert/1000:.2f} km/s [{uncert/probe_velocity * 100 :.2f}%])")
data[x2_shot]["shock-speed"][f"{dataInfo["pcb-refs"][i-1]}-{refProbe}"] = probe_velocity, uncert, True # Speed, Ref
print()
for probe in dataInfo["probe-info"]["locations"]:
if f"{probe}-g1" in data[x2_shot]["shock-point"] and f"{probe}-g2" in data[x2_shot]["shock-point"]:
g1_time = data[x2_shot]["shock-point"][f"{probe}-g1"][1] / 1e6 # Convert to seconds
g2_time = data[x2_shot]["shock-point"][f"{probe}-g2"][1] / 1e6 # Convert to seconds
c2c_dist = dataInfo["probe-info"]["c2c"] / 1000 # convert to m
c2c_time = abs(g2_time - g1_time)
probe_velocity = c2c_dist / c2c_time # m/s
g1_time_uncert = data[x2_shot]["shock-point"][f"{probe}-g1"][2] / 1e6 # Convert to seconds
g2_time_uncert = data[x2_shot]["shock-point"][f"{probe}-g2"][2] / 1e6 # Convert to seconds
uncert = deltaVs(probe_velocity, p2p_dist, p2p_time, (0.05/1000, 0.05/1000), (g1_time_uncert, g2_time_uncert, data[x2_shot]["time"]["probe_uncert"]))
print(f"{probe} Measured a shock speed of {probe_velocity:.2f} +/- {uncert:.2f} m/s ({probe_velocity/1000:.2f} +/- {uncert/1000:.2f} km/s)")
data[x2_shot]["shock-speed"][probe] = probe_velocity, uncert, False # Speed, Ref # m/s
else:
print(f"Unable to calculate probe velocity, only have one gauge: {f"{probe}-g2" if f"{probe}-g2" in data[x2_shot]["shock-point"] else f"{probe}-g1"}")
if len(dataInfo["probe-info"]["locations"]) > 1:
for i in range(len(dataInfo["probe-info"]["locations"]) - 1):
probe_locs = dataInfo["probe-info"]["locations"]
p2p_dist = (TUNNEL_INFO["distance"][probe_locs[1]] - TUNNEL_INFO["distance"][probe_locs[0]]) / 1000 # convert to m
if f"{probe_locs[i]}-g1" in data[x2_shot]["shock-point"] and f"{probe_locs[i+1]}-g1" in data[x2_shot]["shock-point"]:
p1_g1_time = data[x2_shot]["shock-point"][f"{probe_locs[i]}-g1"][1] / 1e6 # Convert to seconds
p2_g1_time = data[x2_shot]["shock-point"][f"{probe_locs[i+1]}-g1"][1] / 1e6 # Convert to seconds
p2p_time = abs(p2_g1_time - p1_g1_time)
p2p_1 = p2p_dist / p2p_time # m/s
p1_time_uncert = data[x2_shot]["shock-point"][f"{probe_locs[i]}-g1"][2] / 1e6 # Convert to seconds
p2_time_uncert = data[x2_shot]["shock-point"][f"{probe_locs[i+1]}-g1"][2] / 1e6 # Convert to seconds
uncert = deltaVs(p2p_1, p2p_dist, p2p_time, (UNCERTS["probe-dist"][probe_locs[i]], UNCERTS["probe-dist"][probe_locs[i+1]]), (p1_time_uncert, p2_time_uncert, data[x2_shot]["time"]["probe_uncert"]))
print(f"{probe_locs[i]}-{probe_locs[i + 1]} - G1 - Measured a shock speed of {p2p_1:.2f} +/- {uncert:.2f} m/s ({p2p_1/1000:.2f} +/- {uncert/1000:.2f} [{uncert/p2p_1 * 100:.2f}%] km/s)")
data[x2_shot]["shock-speed"][f"{probe_locs[i]}-{probe_locs[i + 1]}-g1"] = p2p_1, uncert, False # Speed, Ref
if f"{probe_locs[i]}-g2" in data[x2_shot]["shock-point"] and f"{probe_locs[i+1]}-g2" in data[x2_shot]["shock-point"]:
p1_g2_time = data[x2_shot]["shock-point"][f"{probe_locs[i]}-g2"][1] / 1e6 # Convert to seconds
p2_g2_time = data[x2_shot]["shock-point"][f"{probe_locs[i+1]}-g2"][1] / 1e6 # Convert to seconds
p2p_time = abs(p2_g2_time - p1_g2_time)
p2p_2 = p2p_dist / p2p_time # m/s
p1_time_uncert = data[x2_shot]["shock-point"][f"{probe_locs[i]}-g2"][2] / 1e6 # Convert to seconds
p2_time_uncert = data[x2_shot]["shock-point"][f"{probe_locs[i+1]}-g2"][2] / 1e6 # Convert to seconds
uncert = deltaVs(p2p_2, p2p_dist, p2p_time, (UNCERTS["probe-dist"][probe_locs[i]], UNCERTS["probe-dist"][probe_locs[i+1]]), (p1_time_uncert, p2_time_uncert, data[x2_shot]["time"]["probe_uncert"]))
print(f"{probe_locs[i]}-{probe_locs[i + 1]} - G2 - Measured a shock speed of {p2p_2:.2f} +/- {uncert:.2f} m/s ({p2p_2/1000:.2f} +/- {uncert/1000:.2f} [{uncert/p2p_2 * 100:.2f}%] km/s)")
data[x2_shot]["shock-speed"][f"{probe_locs[i]}-{probe_locs[i + 1]}-g2"] = p2p_2, uncert, False # Speed, Ref
print()
# Return the data & the successfully loaded data keys
return data #, tuple(data.keys())
data = {}
for dp in data_to_load:
pdp = f"{DATA_PATH}/{dp}/"
load_data(pdp, data)
loaded_data = tuple(data.keys())
print("Loaded Data")
#[TODO] Refactor
def genGraph(gData: dict, showPlot: bool = True, doLimits: bool = True, forcePlots: bool = False, addShockInfo: bool = True):
graphData = {
"title": f"Shock response Time\nFor {gData['info']['long_name']}",
"xLabel": "Time ($\\mu$s)",
"yLabel": "Voltage Reading (V)",
"grid": True,
"figSize": (8,6.5),
"ledgLoc": 'upper left',
"plots": []
}
#if forcePlots or not doLimits: graphData["title"] += "\n"
#if forcePlots: graphData["title"] += "(All Data Shown)"
#if not doLimits: graphData["title"] += () + "Full Re"
lims = []
for label in gData["info"]["pcb-refs"]: # + ["trigbox"]:
if not forcePlots and label in gData["info"]["no-graph"]: continue
graphData["plots"].append({
"x": gData["time"]["x2"],
"y": gData["data"]["x2"][label],
"label": label
})
if label in gData["info"]["pcb-refs"]:
graphData["plots"].append({
"type": "axvLine",
"x": gData["shock-point"][label][1],
"label": f"{label} - Shock Point {gData["shock-point"][label][1]:.2f}$\\mu$s",
"colour": "gray",
"args":{"zorder":2, "linestyle":"--", "alpha":0.5}
})
lims.append(gData["shock-point"][label][1]) # [TODO this but better]
for label, d in [("1 [V]", "Gauge 1"),("2 [V]", "Gauge 2")]: #, ("4 [V]", "Gauge Trigger")]:
graphData["plots"].append({
"x": gData["time"]["scope"],
"y": gData["data"]["scope"][label],
"label": d
})
for i, probe in enumerate(gData["info"]["probe-info"]["locations"]):
if f"{probe}-g1" in gData["shock-point"]:
graphData["plots"].append({
"type": "axvLine",
"x": gData["shock-point"][f"{probe}-g1"][1],#[i],
"label": f"{probe}-Gauge 1 - Shock Point {gData["shock-point"][f"{probe}-g1"][1]:.2f}$\\mu$s",
"colour": UQC["purple"].lighten(0.5),
"args":{"zorder":2, "linestyle":"--", "alpha":0.5}
})
lims.append(gData["shock-point"][f"{probe}-g1"][1])
if f"{probe}-g2" in gData["shock-point"]:
graphData["plots"].append({
"type": "axvLine",
"x": gData["shock-point"][f"{probe}-g2"][1],#[i],
"label": f"{probe}-Gauge 2 - Shock Point {gData["shock-point"][f"{probe}-g2"][1]:.2f}$\\mu$s",
"colour": UQC["purple"].lighten(0.5),
"args":{"zorder":2, "linestyle":"--", "alpha":0.5}
})
lims.append(gData["shock-point"][f"{probe}-g2"][1])
if addShockInfo:
probeText = ""
flag = False
for shock_speed_loc in gData["shock-speed"]:
if not flag and not gData["shock-speed"][shock_speed_loc][2]:
flag = True
probeText += "\n" + "-"*50
probeText += "\n"
#probeText += "\\definecolor{my_gray}{rbg}{0.6, 0.5803921568627451, 0.5647058823529412}\\textcolor{my_gray}{" if gData["shock-speed"][shock_speed_loc][1] else ""
probeText += f"{shock_speed_loc} - {gData['shock-speed'][shock_speed_loc][0]/1000:.2f} $\\pm${gData['shock-speed'][shock_speed_loc][1]/1000:.2f} [{gData['shock-speed'][shock_speed_loc][1]/gData['shock-speed'][shock_speed_loc][0]*100:.2f}%] km/s"
#probeText += "}" if gData["shock-speed"][shock_speed_loc][1] else ""
graphData["plots"].append({
"type": "text",
"text": f"Measured Shock Speeds {probeText}",
"align": ("top", "right"),
"alpha": 0.75,
"x": 0.94 if len(gData["info"]["probe-info"]["locations"]) < 3 else 0.885,
"y": 0.94
})
if doLimits and len(lims) > 1:
OFFSET = 10 #if not forcePlots else 50
graphData["xLim"] = (float(min(lims) - OFFSET), float(max(lims) + OFFSET))
makeGraph(graphData, doProgramBlock=False, showPlot=showPlot, figSavePath=f"./images/{gData['info']['shot-info']['name']}{'-all' if forcePlots else ''}{'-clipped' if doLimits else ''}.png") #figSavePath=f"./images/{{0}}{"-noLims" if not doLimits else ""}.png")
print("Graphing Data")
for shot in loaded_data:
#if shot != loaded_data[-2]: continue
genGraph(data[shot], showPlot=False, addShockInfo=False)
genGraph(data[shot], showPlot=False, forcePlots=True)
# This forces matplotlib to hang until I tell it to close all windows
pltKeyClose()
print("Done")