Thesis/main.py
2024-10-18 00:08:30 +10:00

359 lines
13 KiB
Python

# Cal Wing (c.wing@uq.net.au) - Oct 2024
# Thesis Graphing
import os
import numpy as np
import pandas as pd
import yaml
from nptdms import TdmsFile
from makeGraph import makeGraph, pltKeyClose, UQ_COLOURS as UQC
from canny_shock_finder import canny_shock_finder
# Folder correction
# Make sure the relevant folders folder exists
folders = ["./images"]
for folder in folders:
if not os.path.isdir(folder): os.mkdir(folder)
# Data Paths
DATA_PATH = "./data"
DATA_INFO = "_info.yaml"
TUNNEL_INFO_FILE = "./tunnel-info.yaml"
SAMPLES_TO_AVG = 500
CANNY_TIME_OFFSET = 50 #us
with open(TUNNEL_INFO_FILE, 'r') as file:
TUNNEL_INFO = yaml.safe_load(file)
data_to_load = [
"x2s5823",
"x2s5824",
"x2s5827",
"x2s5829",
]
# ==== Data Loading & Processing ====
def load_data(data_path: str, data={}) -> dict:
data_info_path = data_path + DATA_INFO
if not os.path.exists(data_info_path):
print(f"[ERR] Could not find data info file: '{data_info_path}'")
print(f"[WARN] Not Loading Data '{data_path}'")
return None
# Load Shot Data Info YAML File (Cal)
with open(data_info_path, 'r') as file:
dataInfo = yaml.safe_load(file)
# Grab the shot name
x2_shot = dataInfo["shot-info"]["name"]
# Load Raw Data
# TDMS File (X2 DAQ Data)
x2_tdms_data = TdmsFile.read(data_path + dataInfo["shot-info"]['tdms'], raw_timestamps=True)
x2_channels = x2_tdms_data.groups()[0].channels()
x2_channel_names = tuple(c.name for c in x2_channels)
# Scope info _if it exists_
if dataInfo["probe-info"]["data-record"]["type"] == "scope":
scope_data_path = data_path + dataInfo["probe-info"]["data-record"]["data"]
scope_config_path = data_path + dataInfo["probe-info"]["data-record"]["config"] # [TODO] Read this file
# Generate Data Headers - This could be better
with open(scope_data_path, 'r') as dfile:
scope_header = []
header_lines = []
for i, line in enumerate(dfile):
if i > 1: break
header_lines.append(line.strip().split(","))
for i, name in enumerate(header_lines[0]):
if name == "x-axis":
name = "Time"
if header_lines[1][i] in ["second", "Volt"]:
outStr = f"{name} [{header_lines[1][i][0]}]"
else:
outStr = f"{name} [{header_lines[1][i]}]"
scope_header.append(outStr)
# Load the Scope CSV Data
scope_data = np.loadtxt(scope_data_path, delimiter=',', skiprows=2)
# Build a data object (this could be cached - or partially cached if I was clever enough)
# Raw Data is always added - processing comes after
data[x2_shot] = {
"info": dataInfo,
"shot_time": np.datetime64(f"{dataInfo["date"]}T{dataInfo["time"]}"),
"raw-data":{
"probe_headers": scope_header,
"probes": scope_data,
"x2": x2_channels,
"x2-channels": x2_channel_names,
"x2-tdms": x2_tdms_data
},
"time": {
"x2": None,
"trigger_index": None
},
"data": {
"x2": {} # Only pop channels with a voltage scale in ./tunnel-info.yaml
},
"shock-speed": {}
}
# === Process the data ===
# Generate X2 time arrays
time_data = x2_channels[0]
ns_time = time_data[:].as_datetime64('ns')
x2_time_seconds = (ns_time - ns_time[0]) # timedelta64[ns]
x2_time_us = x2_time_seconds.astype("float64") / 1000 # Scale to us
#second_fractions = np.array(time_data[:].second_fractions, dtype=int) # 2^-64 ths of a second
#x2_time_seconds = (second_fractions - second_fractions[0]) / (2**(-64)) # 0 time data and convert to seconds
#x2_time_us = x2_time_seconds * 1000 # Scale to us
# --- Un Scale Data ---
for channel, vScale in TUNNEL_INFO["volt-scale"].items():
# Get the channel index from its name
chIndex = x2_channel_names.index(channel)
# Calculate the average noise offset
avg_noise = x2_channels[chIndex][0:SAMPLES_TO_AVG].mean()
# Save the channel data
data[x2_shot]["data"]["x2"][channel] = (x2_channels[chIndex][:] - avg_noise) * vScale
# Process Trigger Info
trigger_volts = data[x2_shot]["data"]["x2"]["trigbox"] # Use a mean to offset
x2_trigger_index = np.where(trigger_volts > 1)[0][0]
x2_trigger_time = x2_time_us[x2_trigger_index]
# Add the time data
data[x2_shot]["time"] = {
"x2": x2_time_us,
"trigger_index": x2_trigger_index
}
# Scope timing _if it exists_
if dataInfo["probe-info"]["data-record"]["type"] == "scope":
trigger_info = dataInfo["probe-info"]["data-record"]["trigger"] # Get the scope trigger info
# Calc the scope time & apply any manual offsets
scope_time = (scope_data[:, 0] - scope_data[0, 0]) * 1e6 # to us
scope_time -= trigger_info["alignment-offset"] # manual offset delay
# Trigger Alignment
scope_trigger_volts = (scope_data[:, 3] - scope_data[0:SAMPLES_TO_AVG, 3].mean()) # Use a mean here too
scope_trigger_index = np.where(scope_trigger_volts > 1)[0][0]
scope_trigger_time = scope_time[scope_trigger_index]
scope_alignment = x2_trigger_time - scope_trigger_time
scope_time += scope_alignment
# Offset any trigger delays
scope_time += trigger_info["delay"] # us delay from the actual trigger signal to the scope received trigger
data[x2_shot]["time"]["scope"] = scope_time
data[x2_shot]["time"]["scope-offset"] = scope_alignment
data[x2_shot]["data"]["scope"] = {}
for i, header in enumerate(scope_header):
if i == 0: continue # Don't record time
# Python reference so its the same object
ref = scope_data[:, i]
data[x2_shot]["data"]["scope"][i] = ref
data[x2_shot]["data"]["scope"][header] = ref
# Find Shock Times
# X2 - Canning Edge
data[x2_shot]["shock-point"] = {}
for ref in dataInfo["pcb-refs"]:
refData = data[x2_shot]["data"]["x2"][ref]
first_value, first_value_uncertainty, _, _ = canny_shock_finder(x2_time_us, refData, plot=False, print_func=None)
shock_point = np.where(x2_time_us >= first_value)[0][0] # [BUG] Seems to give n+1
data[x2_shot]["shock-point"][ref] = shock_point, first_value
for i, probe in enumerate(dataInfo["probe-info"]["locations"]):
probeCh1 = data[x2_shot]["data"]["scope"][1]
probeCh2 = data[x2_shot]["data"]["scope"][2]
# Get the canny-args
cArgs = dataInfo["canny-args"]
doCannyPlot = False
if i in range(len(cArgs)):
sigma = cArgs[i]["sigma"]
post_pres = cArgs[i]["post_pres"]
else:
sigma = cArgs[-1]["sigma"]
post_pres = cArgs[-1]["post_pres"]
# If this _isn't_ the first probe then apply a time offset
if i > 0:
privPoint = dataInfo["probe-info"]["locations"][i-1]
time_offset = data[x2_shot]["shock-point"][f"{privPoint}-g1"][1] + CANNY_TIME_OFFSET
else:
time_offset = None
# Find G1 Shock Time
first_value, first_value_uncertainty, _, _ = canny_shock_finder(scope_time, probeCh1, sigma=sigma, post_suppression_threshold=post_pres, plot=doCannyPlot, start_time=time_offset, print_func=None)
shock_point = np.where(scope_time >= first_value)[0][0] # [BUG] Seems to give n+1
data[x2_shot]["shock-point"][f"{probe}-g1"] = shock_point, first_value
# Do the same for G2
if i > 0:
time_offset = data[x2_shot]["shock-point"][f"{privPoint}-g2"][1] + CANNY_TIME_OFFSET
# Find G2 Shock Time
first_value, first_value_uncertainty, _, _ = canny_shock_finder(scope_time, probeCh2, sigma=sigma, post_suppression_threshold=post_pres, plot=doCannyPlot, start_time=time_offset, print_func=None)
shock_point = np.where(scope_time >= first_value)[0][0] # [BUG] Seems to give n+1
data[x2_shot]["shock-point"][f"{probe}-g2"] = shock_point, first_value
# Calculate Shock Speeds
print("="*25, x2_shot, "="*25)
for probe in dataInfo["probe-info"]["locations"]:
g1_time = data[x2_shot]["shock-point"][f"{probe}-g1"][1] / 1e6 # Convert to seconds
g2_time = data[x2_shot]["shock-point"][f"{probe}-g2"][1] / 1e6 # Convert to seconds
c2c_dist = dataInfo["probe-info"]["c2c"] / 1000 # convert to m
probe_velocity = c2c_dist / abs(g2_time - g1_time) # m/s
print(f"{probe} Measured a shock speed of {probe_velocity:.2f} m/s ({probe_velocity/1000:.2f} km/s)")
data[x2_shot]["shock-speed"][probe] = probe_velocity # m/s
if len(dataInfo["probe-info"]["locations"]) > 1:
for i in range(len(dataInfo["probe-info"]["locations"]) - 1):
probe_locs = dataInfo["probe-info"]["locations"]
p1_g1_time = data[x2_shot]["shock-point"][f"{probe_locs[i]}-g1"][1] / 1e6 # Convert to seconds
p1_g2_time = data[x2_shot]["shock-point"][f"{probe_locs[i]}-g2"][1] / 1e6 # Convert to seconds
p2_g1_time = data[x2_shot]["shock-point"][f"{probe_locs[i+1]}-g1"][1] / 1e6 # Convert to seconds
p2_g2_time = data[x2_shot]["shock-point"][f"{probe_locs[i+1]}-g2"][1] / 1e6 # Convert to seconds
p2p = (TUNNEL_INFO["distance"][probe_locs[1]] - TUNNEL_INFO["distance"][probe_locs[0]]) / 1000 # convert to m
p2p_1 = p2p / abs(p2_g1_time - p1_g1_time) # m/s
p2p_2 = p2p / abs(p2_g2_time - p1_g2_time) # m/s
print(f"{probe_locs[i]}-{probe_locs[i + 1]} - G1 - Measured a shock speed of {p2p_1:.2f} m/s ({p2p_1/1000:.2f} km/s)")
print(f"{probe_locs[i]}-{probe_locs[i + 1]} - G2 - Measured a shock speed of {p2p_2:.2f} m/s ({p2p_2/1000:.2f} km/s)")
data[x2_shot]["shock-speed"][f"{probe_locs[i]}-{probe_locs[i + 1]}-g1"] = p2p_1
data[x2_shot]["shock-speed"][f"{probe_locs[i]}-{probe_locs[i + 1]}-g2"] = p2p_2
print()
# Return the data & the successfully loaded data keys
return data #, tuple(data.keys())
data = {}
for dp in data_to_load:
pdp = f"{DATA_PATH}/{dp}/"
load_data(pdp, data)
loaded_data = tuple(data.keys())
print("Loaded Data")
#[TODO] Refactor
def genGraph(gData: dict, showPlot: bool = True):
graphData = {
"title": f"Shock response Time\nFor {gData['info']['long_name']}",
"xLabel": "Time ($\\mu$s)",
"yLabel": "Voltage Reading (V)",
"grid": True,
"figSize": (8,6.5),
"ledgLoc": 'upper left',
"plots": []
}
lims = []
for label in gData["info"]["pcb-refs"]: # + ["trigbox"]:
graphData["plots"].append({
"x": gData["time"]["x2"],
"y": gData["data"]["x2"][label],
"label": label
})
if label in gData["info"]["pcb-refs"]:
graphData["plots"].append({
"type": "axvLine",
"x": gData["shock-point"][label][1],
"label": f"{label} - Shock Point {gData["shock-point"][label][1]:.2f}$\\mu$s",
"colour": "gray",
"args":{"zorder":2, "linestyle":"--"}
})
lims.append(gData["shock-point"][label][1]) # [TODO this but better]
for label, d in [("1 [V]", "G1"),("2 [V]", "G2")]: #, ("4 [V]", "Gauge Trigger")]:
graphData["plots"].append({
"x": gData["time"]["scope"],
"y": gData["data"]["scope"][label],
"label": d
})
for i, probe in enumerate(gData["info"]["probe-info"]["locations"]):
graphData["plots"].append({
"type": "axvLine",
"x": gData["shock-point"][f"{probe}-g1"][1],#[i],
"label": f"{probe}-G1 - Shock Point {gData["shock-point"][f"{probe}-g1"][1]:.2f}$\\mu$s",
#"colour": "gray",
"args":{"zorder":2, "linestyle":"--"}
})
graphData["plots"].append({
"type": "axvLine",
"x": gData["shock-point"][f"{probe}-g2"][1],#[i],
"label": f"{probe}-G2 - Shock Point {gData["shock-point"][f"{probe}-g2"][1]:.2f}$\\mu$s",
#"colour": "gray",
"args":{"zorder":2, "linestyle":"--"}
})
lims.append(gData["shock-point"][f"{probe}-g2"][1])
lims.append(gData["shock-point"][f"{probe}-g1"][1])
probeText = ""
for shock_speed_loc in gData["shock-speed"]:
probeText += f"\n{shock_speed_loc} - {gData["shock-speed"][shock_speed_loc]/1000:.2f} km/s"
graphData["plots"].append({
"type": "text",
"text": f"Measured Shock Speeds{probeText}",
"align": ("top", "right"),
"x": 0.94, "y": 0.94
})
if len(lims) > 1:
OFFSET = 10
graphData["xLim"] = (float(min(lims) - OFFSET), float(max(lims) + OFFSET))
makeGraph(graphData, doProgramBlock=False, showPlot=showPlot, figSavePath="./images/{0}.png")
print("Graphing Data")
for shot in loaded_data:
#if shot != loaded_data[-2]: continue
genGraph(data[shot], showPlot=False)
# This forces matplotlib to hang until I tell it to close all windows
pltKeyClose()
print("Done")