179 lines
5.3 KiB
Python
179 lines
5.3 KiB
Python
# Cal Wing (c.wing@uq.net.au) - Oct 2024
|
|
# Thesis Graphing
|
|
|
|
import os
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
|
|
import yaml
|
|
|
|
from nptdms import TdmsFile
|
|
from makeGraph import makeGraph, pltKeyClose, UQ_COLOURS as UQC
|
|
|
|
from canny_shock_finder import canny_shock_finder
|
|
|
|
# Folder correction
|
|
# Make sure the relevant folders folder exists
|
|
folders = ["./images"]
|
|
for folder in folders:
|
|
if not os.path.isdir(folder): os.mkdir(folder)
|
|
|
|
# Load Data
|
|
DATA_PATH = "./data"
|
|
DATA_INFO = "_info.yaml"
|
|
|
|
data_to_load = [
|
|
"x2s5823",
|
|
"x2s5824"
|
|
]
|
|
|
|
data = {}
|
|
|
|
for dp in data_to_load:
|
|
data_path = f"{DATA_PATH}/{dp}/"
|
|
data_info_path = data_path + DATA_INFO
|
|
if not os.path.exists(data_info_path):
|
|
print(f"[ERR] Could not find data info file: '{data_info_path}'")
|
|
print(f"[WARN] Not Loading Data '{dp}'")
|
|
continue
|
|
|
|
with open(data_info_path, 'r') as file:
|
|
# Load data info (Cal)
|
|
dataInfo = yaml.safe_load(file)
|
|
x2_shot = dataInfo["shot-info"]["name"]
|
|
|
|
x2_tdms_data = TdmsFile.read(data_path + dataInfo["shot-info"]['tdms'])
|
|
x2_channels = x2_tdms_data.groups()[0].channels()
|
|
|
|
if dataInfo["probe-info"]["data-record"]["type"] == "scope":
|
|
scope_data_path = data_path + dataInfo["probe-info"]["data-record"]["data"]
|
|
scope_config_path = data_path + dataInfo["probe-info"]["data-record"]["config"]
|
|
|
|
# Generate Headers
|
|
with open(scope_data_path, 'r') as dfile:
|
|
scope_header = []
|
|
|
|
header_lines = []
|
|
for i, line in enumerate(dfile):
|
|
if i > 1: break
|
|
header_lines.append(line.strip().split(","))
|
|
|
|
for i, name in enumerate(header_lines[0]):
|
|
if name == "x-axis":
|
|
name = "Time"
|
|
|
|
if header_lines[1][i] in ["second", "Volt"]:
|
|
outStr = f"{name} [{header_lines[1][i][0]}]"
|
|
else:
|
|
outStr = f"{name} [{header_lines[1][i]}]"
|
|
|
|
scope_header.append(outStr)
|
|
|
|
#scope_data = pd.read_csv(scope_data_path, names=scope_header, skiprows=2)
|
|
scope_data = np.loadtxt(scope_data_path, delimiter=',', skiprows=2)
|
|
|
|
data[x2_shot] = {
|
|
"info": dataInfo,
|
|
"probe_headers": scope_header,
|
|
"probes": scope_data,
|
|
"x2": x2_channels,
|
|
"x2-tdms": x2_tdms_data
|
|
}
|
|
|
|
loaded_data = list(data.keys())
|
|
print("Loaded Data")
|
|
|
|
|
|
def process_data(gData):
|
|
x2_time = (gData["x2"][0][:] - gData["x2"][0][0]).astype('timedelta64[ns]') # Convert x2 to timedelta64[ns]
|
|
|
|
trigger_info = gData["info"]["probe-info"]["data-record"]["trigger"] # Get the scope trigger info
|
|
|
|
# Convert the scope times into timedelta64 & apply config offsets & delays
|
|
scope_time = np.array([ pd.Timedelta(t, 's').to_numpy() for t in (gData["probes"][:, 0] - gData["probes"][0, 0])])
|
|
scope_time =- np.timedelta64(trigger_info["alignment-offset"], 'ns')
|
|
scope_time =+ np.timedelta64(trigger_info["delay"], 'us')
|
|
|
|
#start_time = np.datetime64(f"{gData["info"]["date"]}T{gData["info"]["time"]}")
|
|
|
|
start_time = 0
|
|
x2_timesteps = np.array([0 for _ in x2_time])
|
|
|
|
for i, dt in enumerate(x2_time):
|
|
dt = dt.astype("int")
|
|
if i == 0:
|
|
x2_timesteps[i] = start_time + dt # should be 0
|
|
else:
|
|
x2_timesteps[i] = x2_timesteps[i-1] + dt
|
|
|
|
return x2_time, scope_time, x2_timesteps
|
|
|
|
|
|
def genGraph(gData):
|
|
x2_time, scope_time = process_data(gData)
|
|
|
|
graphData = {
|
|
"title": f"Shock response Time\nFor {gData['info']['long_name']}",
|
|
"xLabel": "Time (ns)",
|
|
"yLabel": "Voltage Reading (V)",
|
|
"grid": True,
|
|
"plots": [
|
|
{
|
|
"x": x2_time,
|
|
"y": (gData["x2"][4][:] - gData["x2"][4][0]) * 0.0148,
|
|
"label": "ST1"
|
|
},
|
|
{
|
|
"x": x2_time,
|
|
"y": (gData["x2"][6][:] - gData["x2"][6][0]) * 0.0148,
|
|
"label": "ST3"
|
|
},
|
|
{
|
|
"x": x2_time,
|
|
"y": (gData["x2"][16][:] - gData["x2"][16][0])/1000,
|
|
"label": "Trigger"
|
|
},
|
|
|
|
{
|
|
"x": scope_time,
|
|
"y": (gData["probes"][:, 1] - gData["probes"][0, 1]),
|
|
"label": "ST2-G1"
|
|
},
|
|
{
|
|
"x": scope_time,
|
|
"y": (gData["probes"][:, 2] - gData["probes"][0, 2]),
|
|
"label": "ST2-G2"
|
|
},
|
|
{
|
|
"x": scope_time,
|
|
"y": (gData["probes"][:, 3] - gData["probes"][0, 3]),
|
|
"label": "ST2-Trigger"
|
|
},
|
|
|
|
]
|
|
}
|
|
|
|
makeGraph(graphData)
|
|
|
|
#print("Graphing Data")
|
|
#genGraph(data[loaded_data[0]])
|
|
#genGraph(data[loaded_data[1]])
|
|
|
|
|
|
# Try to process things
|
|
gData = data[loaded_data[0]]
|
|
x2_time, scope_time, x2_timestamps = process_data(gData)
|
|
|
|
time = (gData["x2"][0][:] - gData["x2"][0][0]).astype('float64')
|
|
|
|
x2_out = canny_shock_finder(time, (gData["x2"][4][:] - gData["x2"][4][0]) * 0.0148)
|
|
|
|
print(x2_out)
|
|
|
|
# This forces matplotlib to hang untill I tell it to close all windows
|
|
pltKeyClose()
|
|
|
|
print("Done")
|
|
|