Thesis/main.py
2024-10-16 23:17:26 +10:00

290 lines
10 KiB
Python

# Cal Wing (c.wing@uq.net.au) - Oct 2024
# Thesis Graphing
import os
import numpy as np
import pandas as pd
import yaml
from nptdms import TdmsFile
from makeGraph import makeGraph, pltKeyClose, UQ_COLOURS as UQC
from canny_shock_finder import canny_shock_finder
# Folder correction
# Make sure the relevant folders folder exists
folders = ["./images"]
for folder in folders:
if not os.path.isdir(folder): os.mkdir(folder)
# Data Paths
DATA_PATH = "./data"
DATA_INFO = "_info.yaml"
TUNNEL_INFO_FILE = "./tunnel-info.yaml"
SAMPLES_TO_AVG = 500
with open(TUNNEL_INFO_FILE, 'r') as file:
TUNNEL_INFO = yaml.safe_load(file)
data_to_load = [
"x2s5823",
"x2s5824",
"x2s5827"
]
# ==== Data Loading & Processing ====
def load_data(data_to_load: list[str]) -> dict:
data = {}
for dp in data_to_load:
data_path = f"{DATA_PATH}/{dp}/"
data_info_path = data_path + DATA_INFO
if not os.path.exists(data_info_path):
print(f"[ERR] Could not find data info file: '{data_info_path}'")
print(f"[WARN] Not Loading Data '{dp}'")
continue
# Load Shot Data Info YAML File (Cal)
with open(data_info_path, 'r') as file:
dataInfo = yaml.safe_load(file)
# Grab the shot name
x2_shot = dataInfo["shot-info"]["name"]
# Load Raw Data
# TDMS File (X2 DAQ Data)
x2_tdms_data = TdmsFile.read(data_path + dataInfo["shot-info"]['tdms'], raw_timestamps=True)
x2_channels = x2_tdms_data.groups()[0].channels()
x2_channel_names = tuple(c.name for c in x2_channels)
# Scope info _if it exists_
if dataInfo["probe-info"]["data-record"]["type"] == "scope":
scope_data_path = data_path + dataInfo["probe-info"]["data-record"]["data"]
scope_config_path = data_path + dataInfo["probe-info"]["data-record"]["config"] # [TODO] Read this file
# Generate Data Headers - This could be better
with open(scope_data_path, 'r') as dfile:
scope_header = []
header_lines = []
for i, line in enumerate(dfile):
if i > 1: break
header_lines.append(line.strip().split(","))
for i, name in enumerate(header_lines[0]):
if name == "x-axis":
name = "Time"
if header_lines[1][i] in ["second", "Volt"]:
outStr = f"{name} [{header_lines[1][i][0]}]"
else:
outStr = f"{name} [{header_lines[1][i]}]"
scope_header.append(outStr)
# Load the Scope CSV Data
scope_data = np.loadtxt(scope_data_path, delimiter=',', skiprows=2)
# Build a data object (this could be cached - or partially cached if I was clever enough)
# Raw Data is always added - processing comes after
data[x2_shot] = {
"info": dataInfo,
"shot_time": np.datetime64(f"{dataInfo["date"]}T{dataInfo["time"]}"),
"raw-data":{
"probe_headers": scope_header,
"probes": scope_data,
"x2": x2_channels,
"x2-channels": x2_channel_names,
"x2-tdms": x2_tdms_data
},
"time": {
"x2": None,
"trigger_index": None
},
"data": {
"x2": {} # Only pop channels with a voltage scale in ./tunnel-info.yaml
}
}
# === Process the data ===
# Generate X2 time arrays
time_data = x2_channels[0]
ns_time = time_data[:].as_datetime64('ns')
x2_time_seconds = (ns_time - ns_time[0]) # timedelta64[ns]
x2_time_us = x2_time_seconds.astype("float64") / 1000 # Scale to us
#second_fractions = np.array(time_data[:].second_fractions, dtype=int) # 2^-64 ths of a second
#x2_time_seconds = (second_fractions - second_fractions[0]) / (2**(-64)) # 0 time data and convert to seconds
#x2_time_us = x2_time_seconds * 1000 # Scale to us
# --- Un Scale Data ---
for channel, vScale in TUNNEL_INFO["volt-scale"].items():
# Get the channel index from its name
chIndex = x2_channel_names.index(channel)
# Calculate the average noise offset
avg_noise = x2_channels[chIndex][0:SAMPLES_TO_AVG].mean()
# Save the channel data
data[x2_shot]["data"]["x2"][channel] = (x2_channels[chIndex][:] - avg_noise) * vScale
# Process Trigger Info
trigger_volts = data[x2_shot]["data"]["x2"]["trigbox"] # Use a mean to offset
x2_trigger_index = np.where(trigger_volts > 1)[0][0]
x2_trigger_time = x2_time_us[x2_trigger_index]
# Add the time data
data[x2_shot]["time"] = {
"x2": x2_time_us,
"trigger_index": x2_trigger_index
}
# Scope timing _if it exists_
if dataInfo["probe-info"]["data-record"]["type"] == "scope":
trigger_info = dataInfo["probe-info"]["data-record"]["trigger"] # Get the scope trigger info
# Calc the scope time & apply any manual offsets
scope_time = (scope_data[:, 0] - scope_data[0, 0]) * 1e6 # to us
scope_time -= trigger_info["alignment-offset"] # manual offset delay
# Trigger Alignment
scope_trigger_volts = (scope_data[:, 3] - scope_data[0:SAMPLES_TO_AVG, 3].mean()) # Use a mean here too
scope_trigger_index = np.where(scope_trigger_volts > 1)[0][0]
scope_trigger_time = scope_time[scope_trigger_index]
scope_alignment = x2_trigger_time - scope_trigger_time
scope_time += scope_alignment
# Offset any trigger delays
scope_time += trigger_info["delay"] # us delay from the actual trigger signal to the scope received trigger
data[x2_shot]["time"]["scope"] = scope_time
data[x2_shot]["time"]["scope-offset"] = scope_alignment
data[x2_shot]["data"]["scope"] = {}
for i, header in enumerate(scope_header):
if i == 0: continue # Don't record time
# Python reference so its the same object
ref = scope_data[:, i]
data[x2_shot]["data"]["scope"][i] = ref
data[x2_shot]["data"]["scope"][header] = ref
# Find Shock Times
# X2 - Canning Edge
data[x2_shot]["shock-point"] = {}
for ref in dataInfo["pcb-refs"]:
refData = data[x2_shot]["data"]["x2"][ref]
first_value, first_value_uncertainty, _, _ = canny_shock_finder(x2_time_us, refData, plot=False)
shock_point = np.where(x2_time_us >= first_value)[0][0] # [BUG] Seems to give n+1
data[x2_shot]["shock-point"][ref] = shock_point, first_value
for probe in dataInfo["probe-info"]["locations"]:
probeCh1 = data[x2_shot]["data"]["scope"][1]
probeCh2 = data[x2_shot]["data"]["scope"][2]
#first_value, first_value_uncertainty, _, _ = canny_shock_finder(scope_time, probeCh1, plot=True)
#shock_point = np.where(scope_time >= first_value)[0][0] # [BUG] Seems to give n+1
#[HACK] For detection
shock_point = np.where(probeCh1 >= 0.3)[0][0]
first_value = scope_time[shock_point]
data[x2_shot]["shock-point"][f"{probe}-g1"] = shock_point, first_value
#first_value, first_value_uncertainty, _, _ = canny_shock_finder(scope_time, probeCh2, plot=False)
#shock_point = np.where(scope_time >= first_value)[0][0] # [BUG] Seems to give n+1
#[HACK] For detection
shock_point = np.where(probeCh2 >= 0.3)[0][0]
first_value = scope_time[shock_point]
data[x2_shot]["shock-point"][f"{probe}-g2"] = shock_point, first_value
# Return the data & the successfully loaded data keys
return data, tuple(data.keys())
data, loaded_data = load_data(data_to_load)
print("Loaded Data")
#[TODO] Refactor
def genGraph(gData: dict, showPlot: bool = True):
graphData = {
"title": f"Shock response Time\nFor {gData['info']['long_name']}",
"xLabel": "Time ($\\mu$s)",
"yLabel": "Voltage Reading (V)",
"grid": True,
"plots": []
}
for label in gData["info"]["pcb-refs"] + ["trigbox"]:
graphData["plots"].append({
"x": gData["time"]["x2"],
"y": gData["data"]["x2"][label],
"label": label
})
if label in gData["info"]["pcb-refs"]:
graphData["plots"].append({
"type": "axvLine",
"x": gData["shock-point"][label][1],
"label": f"{label} - Shock Point {gData["shock-point"][label][1]}$\\mu$s",
"colour": "gray",
"args":{"zorder":2, "linestyle":"--"}
})
for label, d in [("1 [V]", "G1"),("2 [V]", "G2"), ("4 [V]", "Gauge Trigger")]:
graphData["plots"].append({
"x": gData["time"]["scope"],
"y": gData["data"]["scope"][label],
"label": d
})
for probe in gData["info"]["probe-info"]["locations"]:
graphData["plots"].append({
"type": "axvLine",
"x": gData["shock-point"][f"{probe}-g1"][1],
"label": f"{label}-G1 - Shock Point {gData["shock-point"][f"{probe}-g1"][1]}$\\mu$s",
"colour": "gray",
"args":{"zorder":2, "linestyle":"--"}
})
graphData["plots"].append({
"type": "axvLine",
"x": gData["shock-point"][f"{probe}-g2"][1],
"label": f"{label}-G2 - Shock Point {gData["shock-point"][f"{probe}-g2"][1]}$\\mu$s",
"colour": "gray",
"args":{"zorder":2, "linestyle":"--"}
})
makeGraph(graphData, doProgramBlock=False, showPlot=showPlot, figSavePath="./images/{0}.png")
print("Graphing Data")
genGraph(data[loaded_data[0]], showPlot=False)
genGraph(data[loaded_data[1]], showPlot=False)
genGraph(data[loaded_data[2]], showPlot=False)
from pprint import pprint
pprint(data[loaded_data[0]])
#x2_out = canny_shock_finder(x2_time, (gData["raw-data"]["x2"][16][:] - gData["raw-data"]["x2"][16][0]))
#print(x2_out)
# This forces matplotlib to hang until I tell it to close all windows
pltKeyClose()
print("Done")