2024-10-15 15:11:10 +10:00
|
|
|
# Cal Wing (c.wing@uq.net.au) - Oct 2024
|
|
|
|
# Thesis Graphing
|
2024-09-30 15:11:52 +10:00
|
|
|
|
2024-09-30 19:30:28 +10:00
|
|
|
import os
|
|
|
|
|
2024-09-30 19:13:09 +10:00
|
|
|
import numpy as np
|
2024-10-15 15:11:10 +10:00
|
|
|
import pandas as pd
|
|
|
|
|
|
|
|
import yaml
|
2024-09-30 19:13:09 +10:00
|
|
|
|
2024-09-30 15:11:52 +10:00
|
|
|
from nptdms import TdmsFile
|
|
|
|
from makeGraph import makeGraph, pltKeyClose, UQ_COLOURS as UQC
|
|
|
|
|
2024-10-15 20:33:26 +10:00
|
|
|
from canny_shock_finder import canny_shock_finder
|
|
|
|
|
2024-09-30 19:30:28 +10:00
|
|
|
# Folder correction
|
|
|
|
# Make sure the relevant folders folder exists
|
|
|
|
folders = ["./images"]
|
|
|
|
for folder in folders:
|
|
|
|
if not os.path.isdir(folder): os.mkdir(folder)
|
|
|
|
|
2024-10-16 22:09:24 +10:00
|
|
|
# Data Paths
|
2024-10-15 15:11:10 +10:00
|
|
|
DATA_PATH = "./data"
|
|
|
|
DATA_INFO = "_info.yaml"
|
2024-10-16 22:09:24 +10:00
|
|
|
TUNNEL_INFO_FILE = "./tunnel-info.yaml"
|
|
|
|
SAMPLES_TO_AVG = 500
|
2024-10-16 20:57:25 +10:00
|
|
|
|
2024-10-16 22:09:24 +10:00
|
|
|
with open(TUNNEL_INFO_FILE, 'r') as file:
|
|
|
|
TUNNEL_INFO = yaml.safe_load(file)
|
2024-09-30 16:45:52 +10:00
|
|
|
|
2024-10-15 15:11:10 +10:00
|
|
|
data_to_load = [
|
2024-10-15 18:28:10 +10:00
|
|
|
"x2s5823",
|
2024-10-16 19:59:49 +10:00
|
|
|
"x2s5824",
|
|
|
|
"x2s5827"
|
2024-10-15 15:11:10 +10:00
|
|
|
]
|
2024-09-30 16:45:52 +10:00
|
|
|
|
2024-10-16 22:09:24 +10:00
|
|
|
# ==== Data Loading & Processing ====
|
|
|
|
def load_data(data_to_load: list[str]) -> dict:
|
|
|
|
data = {}
|
|
|
|
for dp in data_to_load:
|
|
|
|
data_path = f"{DATA_PATH}/{dp}/"
|
|
|
|
data_info_path = data_path + DATA_INFO
|
|
|
|
if not os.path.exists(data_info_path):
|
|
|
|
print(f"[ERR] Could not find data info file: '{data_info_path}'")
|
|
|
|
print(f"[WARN] Not Loading Data '{dp}'")
|
|
|
|
continue
|
|
|
|
|
|
|
|
# Load Shot Data Info YAML File (Cal)
|
|
|
|
with open(data_info_path, 'r') as file:
|
|
|
|
dataInfo = yaml.safe_load(file)
|
|
|
|
|
|
|
|
# Grab the shot name
|
2024-10-15 15:11:10 +10:00
|
|
|
x2_shot = dataInfo["shot-info"]["name"]
|
2024-10-16 22:09:24 +10:00
|
|
|
|
|
|
|
# Load Raw Data
|
|
|
|
# TDMS File (X2 DAQ Data)
|
2024-10-16 19:31:51 +10:00
|
|
|
x2_tdms_data = TdmsFile.read(data_path + dataInfo["shot-info"]['tdms'], raw_timestamps=True)
|
2024-10-15 15:11:10 +10:00
|
|
|
x2_channels = x2_tdms_data.groups()[0].channels()
|
2024-10-16 22:09:24 +10:00
|
|
|
x2_channel_names = tuple(c.name for c in x2_channels)
|
|
|
|
|
|
|
|
# Scope info _if it exists_
|
2024-10-15 15:11:10 +10:00
|
|
|
if dataInfo["probe-info"]["data-record"]["type"] == "scope":
|
|
|
|
scope_data_path = data_path + dataInfo["probe-info"]["data-record"]["data"]
|
2024-10-16 22:09:24 +10:00
|
|
|
scope_config_path = data_path + dataInfo["probe-info"]["data-record"]["config"] # [TODO] Read this file
|
2024-10-15 15:11:10 +10:00
|
|
|
|
2024-10-16 22:09:24 +10:00
|
|
|
# Generate Data Headers - This could be better
|
2024-10-15 15:11:10 +10:00
|
|
|
with open(scope_data_path, 'r') as dfile:
|
|
|
|
scope_header = []
|
2024-10-16 22:09:24 +10:00
|
|
|
|
2024-10-15 15:11:10 +10:00
|
|
|
header_lines = []
|
|
|
|
for i, line in enumerate(dfile):
|
|
|
|
if i > 1: break
|
|
|
|
header_lines.append(line.strip().split(","))
|
|
|
|
|
|
|
|
for i, name in enumerate(header_lines[0]):
|
|
|
|
if name == "x-axis":
|
|
|
|
name = "Time"
|
|
|
|
|
|
|
|
if header_lines[1][i] in ["second", "Volt"]:
|
|
|
|
outStr = f"{name} [{header_lines[1][i][0]}]"
|
|
|
|
else:
|
|
|
|
outStr = f"{name} [{header_lines[1][i]}]"
|
2024-10-16 22:09:24 +10:00
|
|
|
|
2024-10-15 15:11:10 +10:00
|
|
|
scope_header.append(outStr)
|
2024-10-16 22:09:24 +10:00
|
|
|
|
|
|
|
# Load the Scope CSV Data
|
2024-10-15 18:28:10 +10:00
|
|
|
scope_data = np.loadtxt(scope_data_path, delimiter=',', skiprows=2)
|
2024-10-15 15:11:10 +10:00
|
|
|
|
2024-10-16 22:09:24 +10:00
|
|
|
|
|
|
|
# Build a data object (this could be cached - or partially cached if I was clever enough)
|
|
|
|
# Raw Data is always added - processing comes after
|
2024-10-15 15:11:10 +10:00
|
|
|
data[x2_shot] = {
|
|
|
|
"info": dataInfo,
|
2024-10-16 22:09:24 +10:00
|
|
|
"shot_time": np.datetime64(f"{dataInfo["date"]}T{dataInfo["time"]}"),
|
|
|
|
"raw-data":{
|
|
|
|
"probe_headers": scope_header,
|
|
|
|
"probes": scope_data,
|
|
|
|
"x2": x2_channels,
|
|
|
|
"x2-channels": x2_channel_names,
|
|
|
|
"x2-tdms": x2_tdms_data
|
|
|
|
},
|
|
|
|
"time": {
|
|
|
|
"x2": None,
|
|
|
|
"trigger_index": None
|
|
|
|
},
|
|
|
|
"data": {
|
|
|
|
"x2": {} # Only pop channels with a voltage scale in ./tunnel-info.yaml
|
|
|
|
}
|
2024-09-30 19:30:28 +10:00
|
|
|
}
|
2024-09-30 15:11:52 +10:00
|
|
|
|
2024-10-16 22:09:24 +10:00
|
|
|
# === Process the data ===
|
|
|
|
# Generate X2 time arrays
|
|
|
|
time_data = x2_channels[0]
|
2024-10-16 22:45:30 +10:00
|
|
|
|
|
|
|
ns_time = time_data[:].as_datetime64('ns')
|
|
|
|
x2_time_seconds = (ns_time - ns_time[0]) # timedelta64[ns]
|
|
|
|
x2_time_us = x2_time_seconds.astype("float64") / 1000 # Scale to us
|
|
|
|
|
|
|
|
#second_fractions = np.array(time_data[:].second_fractions, dtype=int) # 2^-64 ths of a second
|
|
|
|
#x2_time_seconds = (second_fractions - second_fractions[0]) / (2**(-64)) # 0 time data and convert to seconds
|
|
|
|
#x2_time_us = x2_time_seconds * 1000 # Scale to us
|
2024-10-16 22:09:24 +10:00
|
|
|
|
|
|
|
# --- Un Scale Data ---
|
|
|
|
for channel, vScale in TUNNEL_INFO["volt-scale"].items():
|
|
|
|
# Get the channel index from its name
|
|
|
|
chIndex = x2_channel_names.index(channel)
|
|
|
|
|
|
|
|
# Calculate the average noise offset
|
|
|
|
avg_noise = x2_channels[chIndex][0:SAMPLES_TO_AVG].mean()
|
|
|
|
|
|
|
|
# Save the channel data
|
|
|
|
data[x2_shot]["data"]["x2"][channel] = (x2_channels[chIndex][:] - avg_noise) * vScale
|
|
|
|
|
|
|
|
# Process Trigger Info
|
|
|
|
trigger_volts = data[x2_shot]["data"]["x2"]["trigbox"] # Use a mean to offset
|
|
|
|
x2_trigger_index = np.where(trigger_volts > 1)[0][0]
|
|
|
|
x2_trigger_time = x2_time_us[x2_trigger_index]
|
|
|
|
|
|
|
|
# Add the time data
|
|
|
|
data[x2_shot]["time"] = {
|
|
|
|
"x2": x2_time_us,
|
|
|
|
"trigger_index": x2_trigger_index
|
|
|
|
}
|
2024-09-30 15:11:52 +10:00
|
|
|
|
2024-10-16 19:31:51 +10:00
|
|
|
|
2024-10-16 22:09:24 +10:00
|
|
|
# Scope timing _if it exists_
|
|
|
|
if dataInfo["probe-info"]["data-record"]["type"] == "scope":
|
|
|
|
trigger_info = dataInfo["probe-info"]["data-record"]["trigger"] # Get the scope trigger info
|
2024-10-16 19:31:51 +10:00
|
|
|
|
2024-10-16 22:45:30 +10:00
|
|
|
# Calc the scope time & apply any manual offsets
|
|
|
|
scope_time = (scope_data[:, 0] - scope_data[0, 0]) * 1e6 # to us
|
2024-10-16 22:09:24 +10:00
|
|
|
scope_time -= trigger_info["alignment-offset"] # manual offset delay
|
2024-10-16 19:31:51 +10:00
|
|
|
|
2024-10-16 22:09:24 +10:00
|
|
|
# Trigger Alignment
|
|
|
|
scope_trigger_volts = (scope_data[:, 3] - scope_data[0:SAMPLES_TO_AVG, 3].mean()) # Use a mean here too
|
|
|
|
scope_trigger_index = np.where(scope_trigger_volts > 1)[0][0]
|
|
|
|
scope_trigger_time = scope_time[scope_trigger_index]
|
2024-10-15 20:33:26 +10:00
|
|
|
|
2024-10-16 22:09:24 +10:00
|
|
|
scope_alignment = x2_trigger_time - scope_trigger_time
|
2024-10-15 20:33:26 +10:00
|
|
|
|
2024-10-16 22:09:24 +10:00
|
|
|
scope_time += scope_alignment
|
2024-10-15 20:33:26 +10:00
|
|
|
|
2024-10-16 22:45:30 +10:00
|
|
|
# Offset any trigger delays
|
|
|
|
scope_time += trigger_info["delay"] # us delay from the actual trigger signal to the scope received trigger
|
|
|
|
|
2024-10-16 22:09:24 +10:00
|
|
|
data[x2_shot]["time"]["scope"] = scope_time
|
|
|
|
data[x2_shot]["time"]["scope-offset"] = scope_alignment
|
2024-10-15 20:33:26 +10:00
|
|
|
|
2024-10-16 22:09:24 +10:00
|
|
|
data[x2_shot]["data"]["scope"] = {}
|
|
|
|
for i, header in enumerate(scope_header):
|
|
|
|
if i == 0: continue # Don't record time
|
2024-10-16 19:31:51 +10:00
|
|
|
|
2024-10-16 23:17:26 +10:00
|
|
|
# Python reference so its the same object
|
|
|
|
ref = scope_data[:, i]
|
|
|
|
data[x2_shot]["data"]["scope"][i] = ref
|
|
|
|
data[x2_shot]["data"]["scope"][header] = ref
|
2024-10-15 20:33:26 +10:00
|
|
|
|
2024-10-16 23:17:26 +10:00
|
|
|
|
|
|
|
# Find Shock Times
|
|
|
|
# X2 - Canning Edge
|
|
|
|
data[x2_shot]["shock-point"] = {}
|
|
|
|
for ref in dataInfo["pcb-refs"]:
|
|
|
|
refData = data[x2_shot]["data"]["x2"][ref]
|
|
|
|
first_value, first_value_uncertainty, _, _ = canny_shock_finder(x2_time_us, refData, plot=False)
|
|
|
|
shock_point = np.where(x2_time_us >= first_value)[0][0] # [BUG] Seems to give n+1
|
|
|
|
|
|
|
|
data[x2_shot]["shock-point"][ref] = shock_point, first_value
|
|
|
|
|
2024-10-16 23:38:42 +10:00
|
|
|
for i, probe in enumerate(dataInfo["probe-info"]["locations"]):
|
2024-10-16 23:17:26 +10:00
|
|
|
probeCh1 = data[x2_shot]["data"]["scope"][1]
|
|
|
|
probeCh2 = data[x2_shot]["data"]["scope"][2]
|
2024-10-16 23:56:18 +10:00
|
|
|
|
2024-10-16 23:17:26 +10:00
|
|
|
#[HACK] For detection
|
2024-10-16 23:38:42 +10:00
|
|
|
if i > 0:
|
|
|
|
privPoint = dataInfo["probe-info"]["locations"][i-1]
|
2024-10-16 23:56:18 +10:00
|
|
|
offset = data[x2_shot]["shock-point"][f"{privPoint}-g1"][0] + 150 #[i-1] + 25
|
2024-10-16 23:38:42 +10:00
|
|
|
else:
|
|
|
|
offset = 0
|
|
|
|
|
|
|
|
shock_point = np.where(probeCh1[offset:] >= 0.3)[0] + offset
|
2024-10-16 23:17:26 +10:00
|
|
|
first_value = scope_time[shock_point]
|
|
|
|
|
2024-10-16 23:56:18 +10:00
|
|
|
first_value, first_value_uncertainty, _, _ = canny_shock_finder(scope_time[offset:], probeCh1[offset:], plot=False, sigma=2, post_shock_pressure=0.02)
|
|
|
|
shock_point = np.where(scope_time[offset:] >= first_value)[0][0] + offset # [BUG] Seems to give n+1
|
|
|
|
|
|
|
|
data[x2_shot]["shock-point"][f"{probe}-g1"] = shock_point, first_value
|
|
|
|
|
|
|
|
|
2024-10-16 23:17:26 +10:00
|
|
|
#[HACK] For detection
|
2024-10-16 23:38:42 +10:00
|
|
|
if i > 0:
|
|
|
|
privPoint = dataInfo["probe-info"]["locations"][i-1]
|
2024-10-16 23:56:18 +10:00
|
|
|
offset = data[x2_shot]["shock-point"][f"{privPoint}-g2"][0] + 150 #[i-1] + 25
|
2024-10-16 23:38:42 +10:00
|
|
|
else:
|
|
|
|
offset = 0
|
|
|
|
shock_point = np.where(probeCh2[offset:] >= 0.3)[0] + offset
|
2024-10-16 23:17:26 +10:00
|
|
|
first_value = scope_time[shock_point]
|
2024-10-16 23:56:18 +10:00
|
|
|
|
|
|
|
first_value, first_value_uncertainty, _, _ = canny_shock_finder(scope_time[offset:], probeCh2[offset:], plot=False, sigma=2, post_shock_pressure=0.02)
|
|
|
|
shock_point = np.where(scope_time[offset:] >= first_value)[0][0] + offset # [BUG] Seems to give n+1
|
2024-10-16 23:17:26 +10:00
|
|
|
data[x2_shot]["shock-point"][f"{probe}-g2"] = shock_point, first_value
|
|
|
|
|
2024-10-17 00:02:40 +10:00
|
|
|
# Calculate Shock Speeds
|
2024-10-17 00:15:06 +10:00
|
|
|
print("-"*10, '\n')
|
2024-10-17 00:02:40 +10:00
|
|
|
for probe in dataInfo["probe-info"]["locations"]:
|
|
|
|
g1_time = data[x2_shot]["shock-point"][f"{probe}-g1"][1] / 1e6 # Convert to seconds
|
|
|
|
g2_time = data[x2_shot]["shock-point"][f"{probe}-g2"][1] / 1e6 # Convert to seconds
|
|
|
|
c2c_dist = dataInfo["probe-info"]["c2c"] / 1000 # convert to m
|
|
|
|
|
|
|
|
probe_velocity = c2c_dist / abs(g2_time - g1_time) # m/s
|
2024-10-17 00:15:06 +10:00
|
|
|
|
|
|
|
print(f"{probe} Measured a shock speed of {probe_velocity:.2f} m/s ({probe_velocity/1000:.2f} km/s)")
|
|
|
|
|
|
|
|
if len(dataInfo["probe-info"]["locations"]) > 1:
|
|
|
|
foo = dataInfo["probe-info"]["locations"]
|
|
|
|
p1_g1_time = data[x2_shot]["shock-point"][f"{foo[0]}-g1"][1] / 1e6 # Convert to seconds
|
|
|
|
p1_g2_time = data[x2_shot]["shock-point"][f"{foo[0]}-g2"][1] / 1e6 # Convert to seconds
|
|
|
|
|
|
|
|
p2_g1_time = data[x2_shot]["shock-point"][f"{foo[1]}-g1"][1] / 1e6 # Convert to seconds
|
|
|
|
p2_g2_time = data[x2_shot]["shock-point"][f"{foo[1]}-g2"][1] / 1e6 # Convert to seconds
|
2024-10-16 23:56:18 +10:00
|
|
|
|
2024-10-17 00:15:06 +10:00
|
|
|
p2p = (TUNNEL_INFO["distance"][foo[1]] - TUNNEL_INFO["distance"][foo[0]]) / 1000 # convert to m
|
|
|
|
|
|
|
|
p2p_1 = p2p / abs(p2_g1_time - p1_g1_time) # m/s
|
|
|
|
p2p_2 = p2p / abs(p2_g2_time - p1_g2_time) # m/s
|
|
|
|
|
2024-10-17 00:15:46 +10:00
|
|
|
print(f"{foo[0]}-{foo[1]} - G1 - Measured a shock speed of {p2p_1:.2f} m/s ({p2p_1/1000:.2f} km/s)")
|
|
|
|
print(f"{foo[0]}-{foo[1]} - G2 - Measured a shock speed of {p2p_2:.2f} m/s ({p2p_2/1000:.2f} km/s)")
|
2024-10-17 00:02:40 +10:00
|
|
|
|
2024-10-16 23:17:26 +10:00
|
|
|
|
2024-10-16 22:09:24 +10:00
|
|
|
# Return the data & the successfully loaded data keys
|
|
|
|
return data, tuple(data.keys())
|
|
|
|
|
|
|
|
data, loaded_data = load_data(data_to_load)
|
|
|
|
print("Loaded Data")
|
2024-10-15 20:33:26 +10:00
|
|
|
|
|
|
|
|
2024-10-16 22:09:24 +10:00
|
|
|
#[TODO] Refactor
|
|
|
|
def genGraph(gData: dict, showPlot: bool = True):
|
2024-10-15 20:33:26 +10:00
|
|
|
graphData = {
|
2024-10-15 21:04:35 +10:00
|
|
|
"title": f"Shock response Time\nFor {gData['info']['long_name']}",
|
2024-10-16 22:45:30 +10:00
|
|
|
"xLabel": "Time ($\\mu$s)",
|
2024-10-15 20:33:26 +10:00
|
|
|
"yLabel": "Voltage Reading (V)",
|
|
|
|
"grid": True,
|
2024-10-16 22:45:30 +10:00
|
|
|
"plots": []
|
2024-10-15 20:33:26 +10:00
|
|
|
}
|
|
|
|
|
2024-10-16 23:17:26 +10:00
|
|
|
for label in gData["info"]["pcb-refs"] + ["trigbox"]:
|
2024-10-16 22:45:30 +10:00
|
|
|
graphData["plots"].append({
|
|
|
|
"x": gData["time"]["x2"],
|
|
|
|
"y": gData["data"]["x2"][label],
|
|
|
|
"label": label
|
|
|
|
})
|
|
|
|
|
2024-10-16 23:17:26 +10:00
|
|
|
if label in gData["info"]["pcb-refs"]:
|
|
|
|
graphData["plots"].append({
|
|
|
|
"type": "axvLine",
|
|
|
|
"x": gData["shock-point"][label][1],
|
2024-10-16 23:38:42 +10:00
|
|
|
"label": f"{label} - Shock Point {gData["shock-point"][label][1]:.2f}$\\mu$s",
|
2024-10-16 23:17:26 +10:00
|
|
|
"colour": "gray",
|
|
|
|
"args":{"zorder":2, "linestyle":"--"}
|
|
|
|
})
|
|
|
|
|
|
|
|
|
|
|
|
for label, d in [("1 [V]", "G1"),("2 [V]", "G2"), ("4 [V]", "Gauge Trigger")]:
|
2024-10-16 22:45:30 +10:00
|
|
|
graphData["plots"].append({
|
|
|
|
"x": gData["time"]["scope"],
|
|
|
|
"y": gData["data"]["scope"][label],
|
|
|
|
"label": d
|
|
|
|
})
|
2024-10-16 23:17:26 +10:00
|
|
|
|
2024-10-16 23:38:42 +10:00
|
|
|
for i, probe in enumerate(gData["info"]["probe-info"]["locations"]):
|
2024-10-16 23:17:26 +10:00
|
|
|
graphData["plots"].append({
|
|
|
|
"type": "axvLine",
|
2024-10-16 23:56:18 +10:00
|
|
|
"x": gData["shock-point"][f"{probe}-g1"][1],#[i],
|
|
|
|
"label": f"{probe}-G1 - Shock Point {gData["shock-point"][f"{probe}-g1"][1]:.2f}$\\mu$s",
|
2024-10-16 23:38:42 +10:00
|
|
|
#"colour": "gray",
|
2024-10-16 23:17:26 +10:00
|
|
|
"args":{"zorder":2, "linestyle":"--"}
|
|
|
|
})
|
|
|
|
graphData["plots"].append({
|
|
|
|
"type": "axvLine",
|
2024-10-16 23:56:18 +10:00
|
|
|
"x": gData["shock-point"][f"{probe}-g2"][1],#[i],
|
|
|
|
"label": f"{probe}-G2 - Shock Point {gData["shock-point"][f"{probe}-g2"][1]:.2f}$\\mu$s",
|
2024-10-16 23:38:42 +10:00
|
|
|
#"colour": "gray",
|
2024-10-16 23:17:26 +10:00
|
|
|
"args":{"zorder":2, "linestyle":"--"}
|
|
|
|
})
|
2024-10-16 22:45:30 +10:00
|
|
|
|
2024-10-16 19:31:51 +10:00
|
|
|
makeGraph(graphData, doProgramBlock=False, showPlot=showPlot, figSavePath="./images/{0}.png")
|
2024-10-15 20:33:26 +10:00
|
|
|
|
2024-10-15 21:30:01 +10:00
|
|
|
|
2024-10-15 18:28:10 +10:00
|
|
|
|
2024-10-16 23:17:26 +10:00
|
|
|
print("Graphing Data")
|
2024-10-17 01:45:54 +10:00
|
|
|
genGraph(data[loaded_data[0]], showPlot=False)
|
|
|
|
genGraph(data[loaded_data[1]], showPlot=False)
|
2024-10-16 23:17:26 +10:00
|
|
|
genGraph(data[loaded_data[2]], showPlot=False)
|
2024-10-16 22:45:30 +10:00
|
|
|
|
2024-10-16 22:09:24 +10:00
|
|
|
# This forces matplotlib to hang until I tell it to close all windows
|
2024-10-17 01:45:54 +10:00
|
|
|
pltKeyClose()
|
2024-10-15 18:28:10 +10:00
|
|
|
|
2024-10-15 21:30:01 +10:00
|
|
|
print("Done")
|
|
|
|
|