Basic Data Loading
This commit is contained in:
parent
0f089db409
commit
86ca28948e
@ -1,7 +1,8 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Canny_shock_finder.py
|
||||
|
||||
A little shock finding code which I [Chris] wrote using a cut down one-dimensional Canny edge detector.
|
||||
A little shock finding code which I wrote using a cut down one-dimensional Canny edge detector.
|
||||
Seems to work quite well with the appropriate selection of input parameters.
|
||||
|
||||
The original paper is:
|
||||
@ -10,19 +11,17 @@ Canny, J. (1986). A computational approach to edge detection.
|
||||
IEEE Transactions on pattern analysis and machine intelligence, (6), 679-698.
|
||||
|
||||
Chris James (c.james4@uq.edu.au) - 04/07/17
|
||||
|
||||
Updated in 2024 by Cal Wing to use Python 3
|
||||
This refactor *REMOVED* some features, namely graphing
|
||||
"""
|
||||
|
||||
__version__ = "0.1.0"
|
||||
__date__ = "15/10/2024"
|
||||
VERSION_STRING = "15-Oct-2024"
|
||||
|
||||
def canny_shock_finder(time_list, pressure_list, sigma = 4, derivative_threshold = 0.001, auto_derivative = False, post_suppression_threshold = 0.05,
|
||||
post_shock_pressure = None, start_time = None, find_second_peak = None, plot = True, plot_scale_factor = None,
|
||||
amount_of_values_before_and_after = 100, time_unit = 's', y_label = 'Pressure (kPa)', plot_title = 'canny shock finding result',
|
||||
return_processing_lists = False, calculate_automatic_derivative_threshold = False,
|
||||
check_canny_runtime = False, plot_time_unit = 's', plot_time_scale = 1.0, print_diag_info: bool = False):
|
||||
check_canny_runtime = False, plot_time_unit = 's', plot_time_scale = 1.0):
|
||||
|
||||
|
||||
"""
|
||||
This is a basic function with uses a cut down one-dimensional Canny edge detector to find shock arrival.
|
||||
It seems to work quite well with the appropriate selection of input parameters
|
||||
@ -117,4 +116,388 @@ def canny_shock_finder(time_list, pressure_list, sigma = 4, derivative_threshold
|
||||
time units. Defaults to 1.0 (so no change if time units are seconds).
|
||||
"""
|
||||
|
||||
|
||||
if check_canny_runtime:
|
||||
import time
|
||||
|
||||
run_start_time = time.time()
|
||||
|
||||
# do any required imports
|
||||
import scipy.ndimage.filters
|
||||
import numpy as np
|
||||
import copy
|
||||
|
||||
print ('-'*60)
|
||||
print ("Running Canny shock finder version {0}".format(VERSION_STRING))
|
||||
|
||||
# do some basic input checking
|
||||
if not isinstance(sigma, (float, int)):
|
||||
raise Exception("canny_shock_finder(): The user specified 'sigma' value ({0}) is not a float or an int.".format(sigma))
|
||||
if post_shock_pressure and not isinstance(post_shock_pressure, (float, int)):
|
||||
raise Exception("canny_shock_finder(): The user specified 'post_shock_pressure' value ({0}) is not a float or an int.".format(post_shock_pressure))
|
||||
elif not post_shock_pressure:
|
||||
if not isinstance(post_suppression_threshold, (float, int)):
|
||||
raise Exception("canny_shock_finder(): The user specified 'post_suppression_threshold' value ({0}) is not a float or an int.".format(post_suppression_threshold))
|
||||
if not auto_derivative:
|
||||
if calculate_automatic_derivative_threshold and not post_shock_pressure:
|
||||
raise Exception("canny_shock_finder(): 'calculate_automatic_derivative_threshold' cannot be used without a specified post-shock pressure value.")
|
||||
elif not calculate_automatic_derivative_threshold:
|
||||
if not isinstance(derivative_threshold, (float, int)):
|
||||
raise Exception("canny_shock_finder(): The user specified 'derivative_threshold' value ({0}) is not a float or an int.".format(derivative_threshold))
|
||||
|
||||
if not start_time:
|
||||
start_time = time_list[0]
|
||||
|
||||
if post_shock_pressure:
|
||||
print ("Using post-shock pressure scaling so the post_suppression_threshold will be calculated using a post-shock pressure estimate.")
|
||||
|
||||
# we need to calculate our post_suppression_threshold here based on the expected post-shock pressure and the
|
||||
# scaling caused by the first order gaussian data based on the maximum of the Gaussian
|
||||
# we'll take it to be half of the pressure rise, and will divide out Gaussian max by 2 as the first derivative
|
||||
# of a gaussian has a maximum which is about half that of a normal Gaussian...
|
||||
|
||||
# make a Gaussian with a mean of zero and our sigma
|
||||
from scipy.stats import norm
|
||||
gaussian = norm(loc=0., scale=sigma)
|
||||
|
||||
# tehn get the value of the probability density function when it is 0 (which is the max)
|
||||
gaussian_max = gaussian.pdf(0)
|
||||
|
||||
x = np.linspace(-5*sigma, 5*sigma, 1000)
|
||||
y = scipy.stats.norm.pdf(x, 0, sigma)
|
||||
|
||||
dx = x[1] - x[0]
|
||||
dydx = np.gradient(y, dx)
|
||||
|
||||
gaussian_first_derivative_max = max(dydx)
|
||||
|
||||
if sigma < 1.0:
|
||||
post_suppression_threshold = 0.1*post_shock_pressure * gaussian_first_derivative_max
|
||||
elif 1.0 <= sigma <= 2.0:
|
||||
post_suppression_threshold = 0.5*post_shock_pressure * gaussian_first_derivative_max
|
||||
else:
|
||||
post_suppression_threshold = post_shock_pressure * gaussian_first_derivative_max
|
||||
|
||||
#post_suppression_threshold = 0.5 * post_shock_pressure * gaussian_max/2.0
|
||||
print ("Calculated post_suppression_threshold is {0}".format(post_suppression_threshold))
|
||||
|
||||
if calculate_automatic_derivative_threshold:
|
||||
print ("Calculating automatic derivative threshold as the user has asked for this.")
|
||||
|
||||
# this commented out code here was my original model, based on the actual second derivative of the Gaussian,
|
||||
# but it didn't seem to work too well (it got too small at very high sigma values, i.e. above 6 or so)
|
||||
#dy2d2x = np.gradient(dydx, dx)
|
||||
#gaussian_second_derivative_max = max(dy2d2x)
|
||||
#derivative_threshold = gaussian_second_derivative_max / 10.0
|
||||
|
||||
# so I basically took some data for a case with a good step change rise of 5 kPa and worked out
|
||||
# that it was exponential decay and could be pretty well approximated with the function below
|
||||
# testing shows that it works alright
|
||||
# I made it stop at a sigma of 6 as, like above, the value was getting too big...
|
||||
|
||||
if sigma < 6:
|
||||
derivative_threshold = post_shock_pressure / 2.5 * np.exp(-sigma) / 10.0
|
||||
else:
|
||||
derivative_threshold = post_shock_pressure / 2.5 * np.exp(-6) / 10.0
|
||||
|
||||
print ("Calculated derivative_threshold is {0}.".format(derivative_threshold))
|
||||
|
||||
# make the input data arrays incase they didn't come in that way...
|
||||
time_list = np.array(time_list)
|
||||
pressure_list = np.array(pressure_list)
|
||||
|
||||
# convolve the input data with both the first and second derivatives of a Gaussian
|
||||
|
||||
# order = 1 gaussian filter (convolution with first derivative of a Gaussian)
|
||||
first_order_data = scipy.ndimage.filters.gaussian_filter1d(pressure_list, sigma = sigma, order = 1)
|
||||
|
||||
#order = 2 gaussian fitler (convolution with second derivative of a Gaussian)
|
||||
second_order_data = scipy.ndimage.filters.gaussian_filter1d(pressure_list, sigma = sigma, order = 2)
|
||||
|
||||
# now we start doing the non-maximum suppression
|
||||
# copy the original first_order_data list and then change values to zero as we need to
|
||||
suppressed_data = copy.copy(first_order_data)
|
||||
|
||||
have_found_first_value = False # flag to tell the code when we have passed the first value
|
||||
|
||||
# set all values to None, so None will be returned if nothing is found.
|
||||
first_value = None
|
||||
first_value_uncertainty = None
|
||||
|
||||
if auto_derivative:
|
||||
print ("Doing auto-derivative!")
|
||||
# remove points which have the same gradient on either side
|
||||
for i in range(0,len(first_order_data)-1):
|
||||
if np.sign(second_order_data[i-1]) == np.sign(second_order_data[i+1]):
|
||||
suppressed_data[i] = 0
|
||||
|
||||
else:
|
||||
print ("Not doing auto-derivative!")
|
||||
for i in range(0,len(first_order_data)-1):
|
||||
|
||||
# check the gradients on either side using the second order data
|
||||
# if they are the same, set the value to 0
|
||||
# the derivative_threshold is also used here to set what is actually zero (that is the elif statement)
|
||||
# if they are NOT the same, we keep the value, so don't change anything...
|
||||
|
||||
if np.sign(second_order_data[i-1]) == np.sign(second_order_data[i+1]):
|
||||
suppressed_data[i] = 0
|
||||
# other condition, which is to try to stop any numerical noise in the point where the second order gaussian crosses zero
|
||||
elif np.sign(second_order_data[i-1]) != np.sign(second_order_data[i+1]) and abs(second_order_data[i-1]) < derivative_threshold or \
|
||||
np.sign(second_order_data[i-1]) != np.sign(second_order_data[i+1]) and abs(second_order_data[i+1]) < derivative_threshold:
|
||||
suppressed_data[i] = 0
|
||||
|
||||
# now we do the final threshold and go through the non-maximum suppressed data and
|
||||
# remove any values below the user specified post_suppression_threshold
|
||||
post_suppression_thresholded_data = copy.copy(suppressed_data)
|
||||
|
||||
for i in range(0, len(suppressed_data)-1):
|
||||
if abs(post_suppression_thresholded_data[i]) < post_suppression_threshold:
|
||||
post_suppression_thresholded_data[i] = 0
|
||||
|
||||
# now loop through again and find the first peak (and the second peak if the user has asked for it)
|
||||
|
||||
if find_second_peak:
|
||||
second_value = None
|
||||
second_value_uncertainty = None
|
||||
|
||||
for i in range(0,len(post_suppression_thresholded_data)-1):
|
||||
# first check that we are past our start time, this will just be the first value is the user hasn't specified something else...
|
||||
if time_list[i] >= start_time:
|
||||
# we want the first peak!
|
||||
if post_suppression_thresholded_data[i] != 0 and not have_found_first_value:
|
||||
have_found_first_value = True
|
||||
print('-'*60)
|
||||
print("First value found at {0} seconds, {1}th value in the data.".format(time_list[i], i))
|
||||
print("Magnitude of first value found in first order Gaussian is {0}.".format(post_suppression_thresholded_data[i]))
|
||||
print("Magnitude of first value found in second order Gaussian is {0}.".format(second_order_data[i]))
|
||||
# store the value too
|
||||
# if the value after the value found isn't 0, the codes the next value as well
|
||||
# and takes the trigger time to be a midpoint with a +- uncertainty
|
||||
# if not, it just takes the single value
|
||||
if auto_derivative:
|
||||
# reducing derivative
|
||||
if second_order_data[i] > second_order_data[i+1]:
|
||||
print("Computing intersection for reducing derivative.")
|
||||
delta_derivative = (second_order_data[i+1] - second_order_data[i])
|
||||
delta_time = time_list[i+1] - time_list[i]
|
||||
first_value = time_list[i] + (second_order_data[i]/-delta_derivative)*delta_time
|
||||
first_value_uncertainty = (time_list[i+1]-time_list[i])/2.0
|
||||
break
|
||||
|
||||
# increasing derivative
|
||||
elif second_order_data[i] < second_order_data[i+1]:
|
||||
print("Computing intersection for increasing derivative.")
|
||||
delta_derivative = (second_order_data[i+1] - second_order_data[i])
|
||||
delta_time = time_list[i+1] - time_list[i]
|
||||
first_value = time_list[i] + (second_order_data[i]/-delta_derivative)*delta_time
|
||||
first_value_uncertainty = (time_list[i]-time_list[i-1])/2.0
|
||||
break
|
||||
|
||||
else:
|
||||
# could not interpolate to find the second derivative zero crossing
|
||||
print("Could not interpolate to find the second derivative zero crossing.")
|
||||
print("Value of second derivative at 'i' is {0} and 'i+1' is {1}".format(second_order_data[i], second_order_data[i+1]))
|
||||
break
|
||||
elif post_suppression_thresholded_data[i+1] == 0:
|
||||
first_value = time_list[i]
|
||||
first_value_uncertainty = 0.0
|
||||
if not find_second_peak:
|
||||
break
|
||||
else:
|
||||
# flag that is used to stop the code picking up the value next to it if the peak found has two values
|
||||
ignore_next_value = False
|
||||
else:
|
||||
first_value = (time_list[i] + (time_list[i+1] - time_list[i])/2.0)
|
||||
first_value_uncertainty = ((time_list[i+1] - time_list[i])/2.0)
|
||||
if not find_second_peak:
|
||||
break
|
||||
else:
|
||||
# flag that is used to stop the code picking up the value next to it if the peak found has two values
|
||||
ignore_next_value = True
|
||||
elif post_suppression_thresholded_data[i] != 0 and have_found_first_value and ignore_next_value:
|
||||
# change the flag back after the next value has been passed...
|
||||
ignore_next_value = False
|
||||
elif post_suppression_thresholded_data[i] != 0 and have_found_first_value and not ignore_next_value:
|
||||
print("Second value found at {0} seconds, {1}th value in the data.".format(time_list[i], i))
|
||||
print("Magnitude of second value found in first order Gaussian is {0}.".format(post_suppression_thresholded_data[i]))
|
||||
print("Magnitude of first value found in second order Gaussian is {0}.".format(second_order_data[i]))
|
||||
# store the value too
|
||||
# if the value after the value found isn't 0, the codes the next value as well
|
||||
# and takes the trigger time to be a midpoint with a +- uncertainty
|
||||
# if not, it just takes the single value
|
||||
if post_suppression_thresholded_data[i+1] == 0:
|
||||
second_value = time_list[i]
|
||||
second_value_uncertainty = 0.0
|
||||
else:
|
||||
second_value = (time_list[i] + (time_list[i+1] - time_list[i])/2.0)
|
||||
second_value_uncertainty = ((time_list[i+1] - time_list[i])/2.0)
|
||||
break
|
||||
|
||||
if check_canny_runtime:
|
||||
run_finish_time = time.time()
|
||||
|
||||
total_run_time = run_finish_time - run_start_time
|
||||
print('-'*60)
|
||||
print("Total Canny run time was {0} milliseconds".format(total_run_time*1000.0))
|
||||
print('-'*60)
|
||||
|
||||
if plot:
|
||||
|
||||
try: # this is mainly so the code doesn't bail out if one closes a window before it has loaded properly
|
||||
import matplotlib.pyplot as mplt
|
||||
|
||||
figure, (data_ax, convolution_ax) = mplt.subplots(2,1, sharex=True, figsize = (14,8))
|
||||
|
||||
data_ax.plot(time_list*plot_time_scale, pressure_list, '-o', label = 'original data')
|
||||
|
||||
convolution_ax.plot(time_list*plot_time_scale, first_order_data, '-o', label='first order gaussian (sigma = {0})'.format(sigma))
|
||||
convolution_ax.plot(time_list*plot_time_scale, second_order_data, '-o', label='second order gaussian (sigma = {0})'.format(sigma))
|
||||
convolution_ax.plot(time_list*plot_time_scale, suppressed_data, '-o', label='first order with non-max suppression')
|
||||
convolution_ax.plot(time_list*plot_time_scale, post_suppression_thresholded_data, '-o', label='final result')
|
||||
|
||||
if first_value:
|
||||
if find_second_peak and second_value:
|
||||
first_shock_arrival_label = 'first shock arrival time'
|
||||
else:
|
||||
first_shock_arrival_label = 'shock arrival time'
|
||||
|
||||
if first_value_uncertainty:
|
||||
for ax in [data_ax, convolution_ax]:
|
||||
ax.axvline((first_value - first_value_uncertainty)*plot_time_scale,
|
||||
ymin=0.0, ymax = 1.0, linestyle = '--',
|
||||
color = 'k', label = first_shock_arrival_label)
|
||||
ax.axvline((first_value + first_value_uncertainty)*plot_time_scale,
|
||||
ymin=0.0, ymax = 1.0, linestyle = '--', color = 'k')
|
||||
else:
|
||||
for ax in [data_ax, convolution_ax]:
|
||||
ax.axvline(first_value*plot_time_scale, ymin=0.0, ymax = 1.0,
|
||||
linestyle = '--', color = 'k', label = first_shock_arrival_label)
|
||||
|
||||
if find_second_peak and second_value:
|
||||
if second_value_uncertainty:
|
||||
for ax in [data_ax, convolution_ax]:
|
||||
ax.axvline((second_value - second_value_uncertainty)*plot_time_scale,
|
||||
ymin=0.0, ymax = 1.0, linestyle = '--', color = 'k',
|
||||
label = "second shock arrival time")
|
||||
ax.axvline((second_value + second_value_uncertainty)*plot_time_scale,
|
||||
ymin=0.0, ymax = 1.0, linestyle = '--', color = 'k')
|
||||
else:
|
||||
for ax in [data_ax, convolution_ax]:
|
||||
ax.axvline(second_value, ymin=0.0, ymax = 1.0,
|
||||
linestyle = '--', color = 'k', label = "second shock arrival time")
|
||||
|
||||
|
||||
font_sizes = {'title_size':16, 'label_size':18,'annotation_size':11,
|
||||
'legend_text_size':11, 'tick_size':17, 'marker_size':12,
|
||||
'main_title_size':20}
|
||||
|
||||
convolution_ax.set_xlabel(r'Time ({0})'.format(plot_time_unit), fontsize=font_sizes['label_size'])
|
||||
data_ax.set_ylabel(y_label, fontsize=font_sizes['label_size'])
|
||||
data_ax.set_title(plot_title, fontsize=font_sizes['title_size'])
|
||||
|
||||
# get the x and y limits by going through the data if we can...
|
||||
if first_value and amount_of_values_before_and_after:
|
||||
cut_down_lists = {}
|
||||
cut_down_lists['pressure'] = []
|
||||
cut_down_lists['first_order'] = []
|
||||
cut_down_lists['second_order'] = []
|
||||
cut_down_lists['suppressed'] = []
|
||||
cut_down_lists['post_suppression'] = []
|
||||
|
||||
# get our sample size by taking two time values from each other...
|
||||
sample_size = time_list[1] - time_list[0]
|
||||
cut_down_time = sample_size*amount_of_values_before_and_after
|
||||
|
||||
if 'second_value' not in locals() or not second_value:
|
||||
start_time = first_value - cut_down_time
|
||||
end_time = first_value + cut_down_time
|
||||
else:
|
||||
# we need to get between two values if we have them...
|
||||
start_time = first_value - cut_down_time
|
||||
end_time = second_value + cut_down_time
|
||||
|
||||
for i, time in enumerate(time_list):
|
||||
if time >= start_time and time <= end_time:
|
||||
cut_down_lists['pressure'].append(pressure_list[i])
|
||||
cut_down_lists['first_order'].append(first_order_data[i])
|
||||
cut_down_lists['second_order'].append(second_order_data[i])
|
||||
cut_down_lists['suppressed'].append(suppressed_data[i])
|
||||
cut_down_lists['post_suppression'].append(post_suppression_thresholded_data[i])
|
||||
elif time > end_time:
|
||||
break
|
||||
|
||||
data_ax.set_xlim(start_time*plot_time_scale, end_time*plot_time_scale)
|
||||
convolution_ax.set_xlim(start_time*plot_time_scale, end_time*plot_time_scale)
|
||||
|
||||
# y-axis for the pressure plot is fine, just take the min and max...
|
||||
pressure_y_min = min(cut_down_lists['pressure'])
|
||||
pressure_y_max = max(cut_down_lists['pressure'])
|
||||
|
||||
data_ax.set_ylim(pressure_y_min, pressure_y_max)
|
||||
|
||||
# y is a bit more complicated for the non-pressure values, as we have multiple things to plot on the y axis....
|
||||
# we'll go through the dictionary keys...
|
||||
y_min = None
|
||||
y_max = None
|
||||
|
||||
for key in cut_down_lists.keys():
|
||||
if key not in ['pressure', 'post_suppression']: # skip these two here...
|
||||
for value in cut_down_lists[key]:
|
||||
if not y_min:
|
||||
y_min = value
|
||||
else:
|
||||
if value < y_min:
|
||||
y_min = value
|
||||
if not y_max:
|
||||
y_max = value
|
||||
else:
|
||||
if value > y_max:
|
||||
y_max = value
|
||||
|
||||
convolution_ax.set_ylim(y_min, y_max)
|
||||
|
||||
for ax in [data_ax, convolution_ax]:
|
||||
# add grid and change ticks
|
||||
ax.spines["right"].set_visible(False)
|
||||
ax.spines["top"].set_visible(False)
|
||||
#figure_dict[plot].grid(True)
|
||||
ax.minorticks_on()
|
||||
ax.tick_params(which='both', direction='out')
|
||||
ax.yaxis.set_ticks_position('left')
|
||||
ax.xaxis.set_ticks_position('bottom')
|
||||
for tick in ax.yaxis.get_major_ticks():
|
||||
tick.label.set_fontsize(font_sizes['tick_size'])
|
||||
for tick in ax.xaxis.get_major_ticks():
|
||||
tick.label.set_fontsize(font_sizes['tick_size'])
|
||||
|
||||
ax.legend(prop={'size':font_sizes['legend_text_size']}, loc = 'best')
|
||||
|
||||
ax.legend(loc = 'best')
|
||||
|
||||
mplt.show()
|
||||
except Exception as e:
|
||||
print ("{0}: {1}".format(type(e).__name__, e.message))
|
||||
print ("There was an issue plotting the result.")
|
||||
mplt.close('all')
|
||||
|
||||
if not return_processing_lists:
|
||||
# just return the found arrival time/times
|
||||
if find_second_peak:
|
||||
return first_value, first_value_uncertainty, second_value, second_value_uncertainty
|
||||
else:
|
||||
return first_value, first_value_uncertainty, None, None
|
||||
else:
|
||||
# put all of teh results in a dictionary and return it too
|
||||
|
||||
results_dict = {}
|
||||
results_dict['time_list'] = time_list
|
||||
results_dict['pressure_list'] = pressure_list
|
||||
results_dict['first_order_data'] = first_order_data
|
||||
results_dict['second_order_data'] = second_order_data
|
||||
results_dict['suppressed_data'] = suppressed_data
|
||||
results_dict['post_suppression_thresholded_data'] = post_suppression_thresholded_data
|
||||
|
||||
if find_second_peak:
|
||||
return first_value, first_value_uncertainty, second_value, second_value_uncertainty, results_dict
|
||||
else:
|
||||
return first_value, first_value_uncertainty, None, None, results_dict
|
@ -1,9 +1,17 @@
|
||||
long_name: "Shot 1 - Fat Probe - 2024-10-15"
|
||||
# Data Info File
|
||||
# Cal Wing - Oct 24
|
||||
|
||||
long_name: "Shot 1 (x2s5823) - Fat Probe - 2024-10-15"
|
||||
name: "Shot 1"
|
||||
date: "2024-10-15"
|
||||
time: "13:02"
|
||||
|
||||
shot-info:
|
||||
name: "x2s5823"
|
||||
tdms: "x2s5823.tdms"
|
||||
config: "x2s5823.config"
|
||||
info: "x2s5823.txt"
|
||||
|
||||
|
||||
probe-info:
|
||||
type: "Fat"
|
||||
@ -13,8 +21,10 @@ probe-info:
|
||||
data-record:
|
||||
type: "scope"
|
||||
config: "eProbe-Scope.txt"
|
||||
data-file: "eProbe-Scope.csv"
|
||||
trigger:
|
||||
type: "scope"
|
||||
data: "eProbe-Scope.csv"
|
||||
|
||||
trigger: # Redundant?
|
||||
type: "channel"
|
||||
channel: 4
|
||||
delay: 0
|
||||
|
||||
|
103
main-comp.py
Normal file
103
main-comp.py
Normal file
@ -0,0 +1,103 @@
|
||||
# Cal Wing
|
||||
# Sep 2024
|
||||
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
|
||||
from nptdms import TdmsFile
|
||||
from makeGraph import makeGraph, pltKeyClose, UQ_COLOURS as UQC
|
||||
|
||||
# Folder correction
|
||||
# Make sure the relevant folders folder exists
|
||||
folders = ["./images"]
|
||||
for folder in folders:
|
||||
if not os.path.isdir(folder): os.mkdir(folder)
|
||||
|
||||
# Photo Diode Things
|
||||
SHOT_PD = "x2s4111", 1, "PD", np.timedelta64(1146800, 'ns')
|
||||
|
||||
# PCB Things
|
||||
SHOT_PCB_1 = "x2s3667", 0.0148 * 1000, "PCB", np.timedelta64(1643, 'us') # st1 - np.timedelta64(1608, 'us')
|
||||
SHOT_PCB_2 = "x2s3668", 0.0148 * 1000, "PCB", np.timedelta64(1648600, 'ns') # st1 - np.timedelta64(1614, 'us')
|
||||
|
||||
# Shot DATA FILE
|
||||
DATA_FILE_FMT = './data/{0}/databox/{0}.tdms'
|
||||
|
||||
TIME_OFFSET = np.timedelta64(-22, 'us'), np.timedelta64(33, 'us') # us
|
||||
|
||||
def main():
|
||||
|
||||
graphData = {
|
||||
"title": "Shock response time of PCBs\nAt position st2",
|
||||
"xLabel": "Time ($\\mu$s)",
|
||||
"yLabel": "PCB Voltage Reading (mV)",
|
||||
"grid": True,
|
||||
"xLim": (-20, 20),
|
||||
"plots": []
|
||||
}
|
||||
|
||||
for df, scale, name, zero_p in [SHOT_PD, SHOT_PCB_1, SHOT_PCB_2]:
|
||||
file_path = DATA_FILE_FMT.format(df)
|
||||
data = TdmsFile.read(file_path)
|
||||
|
||||
channels = data.groups()[0].channels()
|
||||
|
||||
for channel in channels:
|
||||
time = (channels[0][:] - channels[0][0]) # Convert to sec
|
||||
|
||||
time_range_i = [0, 0]
|
||||
|
||||
for i, value in enumerate(time):
|
||||
if value >= zero_p + TIME_OFFSET[0]:
|
||||
time_range_i[0] = i
|
||||
break
|
||||
|
||||
for i, value in enumerate(time):
|
||||
if value >= zero_p + TIME_OFFSET[1]:
|
||||
time_range_i[1] = i
|
||||
break
|
||||
|
||||
|
||||
a = time > time[time_range_i[0]]
|
||||
b = time < time[time_range_i[1]]
|
||||
time_range = np.logical_and(a, b)
|
||||
time_2 = time[time_range][:] - time[time_range][0] + TIME_OFFSET[0]
|
||||
|
||||
#print(time_range, a, b, time_range_i)
|
||||
|
||||
if channel.name == "st2" and df is not SHOT_PD[0]:
|
||||
graphData["plots"].append({
|
||||
"x": time_2,
|
||||
"y": channel[time_range] * scale,
|
||||
"label": f"{df} - {name}"
|
||||
})
|
||||
|
||||
if channel.name == "st2" and df is SHOT_PD[0] and False:
|
||||
graphData["plots"].append({
|
||||
"x": time,
|
||||
"y": channel[:] * scale,
|
||||
"label": f"{df} - {name}"
|
||||
})
|
||||
|
||||
graphData['plots'].append(
|
||||
{
|
||||
"x":0,
|
||||
"type":"axvLine",
|
||||
#"label":"Shock",
|
||||
"color": UQC["dark_grey"],
|
||||
"args": {
|
||||
"linestyle": "--",
|
||||
"zorder": -2
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
makeGraph(graphData, figSavePath="./images/{0}.png", showPlot=False, doProgramBlock=False)
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
||||
#pltKeyClose()
|
142
main.py
142
main.py
@ -1,9 +1,12 @@
|
||||
# Cal Wing
|
||||
# Sep 2024
|
||||
# Cal Wing (c.wing@uq.net.au) - Oct 2024
|
||||
# Thesis Graphing
|
||||
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
import yaml
|
||||
|
||||
from nptdms import TdmsFile
|
||||
from makeGraph import makeGraph, pltKeyClose, UQ_COLOURS as UQC
|
||||
@ -14,90 +17,67 @@ folders = ["./images"]
|
||||
for folder in folders:
|
||||
if not os.path.isdir(folder): os.mkdir(folder)
|
||||
|
||||
# Photo Diode Things
|
||||
SHOT_PD = "x2s4111", 1, "PD", np.timedelta64(1146800, 'ns')
|
||||
# Load Data
|
||||
DATA_PATH = "./data"
|
||||
DATA_INFO = "_info.yaml"
|
||||
|
||||
# PCB Things
|
||||
SHOT_PCB_1 = "x2s3667", 0.0148 * 1000, "PCB", np.timedelta64(1643, 'us') # st1 - np.timedelta64(1608, 'us')
|
||||
SHOT_PCB_2 = "x2s3668", 0.0148 * 1000, "PCB", np.timedelta64(1648600, 'ns') # st1 - np.timedelta64(1614, 'us')
|
||||
data_to_load = [
|
||||
"x2s5823"
|
||||
]
|
||||
|
||||
# Shot DATA FILE
|
||||
DATA_FILE_FMT = './data/{0}/databox/{0}.tdms'
|
||||
data = {}
|
||||
|
||||
TIME_OFFSET = np.timedelta64(-22, 'us'), np.timedelta64(33, 'us') # us
|
||||
|
||||
def main():
|
||||
|
||||
graphData = {
|
||||
"title": "Shock response time of PCBs\nAt position st2",
|
||||
"xLabel": "Time ($\\mu$s)",
|
||||
"yLabel": "PCB Voltage Reading (mV)",
|
||||
"grid": True,
|
||||
"xLim": (-20, 20),
|
||||
"plots": []
|
||||
}
|
||||
|
||||
for df, scale, name, zero_p in [SHOT_PD, SHOT_PCB_1, SHOT_PCB_2]:
|
||||
file_path = DATA_FILE_FMT.format(df)
|
||||
data = TdmsFile.read(file_path)
|
||||
|
||||
channels = data.groups()[0].channels()
|
||||
|
||||
for channel in channels:
|
||||
time = (channels[0][:] - channels[0][0]) # Convert to sec
|
||||
|
||||
time_range_i = [0, 0]
|
||||
|
||||
for i, value in enumerate(time):
|
||||
if value >= zero_p + TIME_OFFSET[0]:
|
||||
time_range_i[0] = i
|
||||
break
|
||||
|
||||
for i, value in enumerate(time):
|
||||
if value >= zero_p + TIME_OFFSET[1]:
|
||||
time_range_i[1] = i
|
||||
break
|
||||
|
||||
|
||||
a = time > time[time_range_i[0]]
|
||||
b = time < time[time_range_i[1]]
|
||||
time_range = np.logical_and(a, b)
|
||||
time_2 = time[time_range][:] - time[time_range][0] + TIME_OFFSET[0]
|
||||
|
||||
#print(time_range, a, b, time_range_i)
|
||||
|
||||
if channel.name == "st2" and df is not SHOT_PD[0]:
|
||||
graphData["plots"].append({
|
||||
"x": time_2,
|
||||
"y": channel[time_range] * scale,
|
||||
"label": f"{df} - {name}"
|
||||
})
|
||||
|
||||
if channel.name == "st2" and df is SHOT_PD[0] and False:
|
||||
graphData["plots"].append({
|
||||
"x": time,
|
||||
"y": channel[:] * scale,
|
||||
"label": f"{df} - {name}"
|
||||
})
|
||||
for dp in data_to_load:
|
||||
data_path = f"{DATA_PATH}/{dp}/"
|
||||
data_info_path = data_path + DATA_INFO
|
||||
if not os.path.exists(data_info_path):
|
||||
print(f"[ERR] Could not find data info file: '{data_info_path}'")
|
||||
print(f"[WARN] Not Loading Data '{dp}'")
|
||||
continue
|
||||
|
||||
graphData['plots'].append(
|
||||
{
|
||||
"x":0,
|
||||
"type":"axvLine",
|
||||
#"label":"Shock",
|
||||
"color": UQC["dark_grey"],
|
||||
"args": {
|
||||
"linestyle": "--",
|
||||
"zorder": -2
|
||||
}
|
||||
with open(data_info_path, 'r') as file:
|
||||
# Load data info (Cal)
|
||||
dataInfo = yaml.safe_load(file)
|
||||
x2_shot = dataInfo["shot-info"]["name"]
|
||||
|
||||
x2_tdms_data = TdmsFile.read(data_path + dataInfo["shot-info"]['tdms'])
|
||||
x2_channels = x2_tdms_data.groups()[0].channels()
|
||||
|
||||
if dataInfo["probe-info"]["data-record"]["type"] == "scope":
|
||||
scope_data_path = data_path + dataInfo["probe-info"]["data-record"]["data"]
|
||||
scope_config_path = data_path + dataInfo["probe-info"]["data-record"]["config"]
|
||||
|
||||
# Generate Headers
|
||||
with open(scope_data_path, 'r') as dfile:
|
||||
scope_header = []
|
||||
|
||||
header_lines = []
|
||||
for i, line in enumerate(dfile):
|
||||
if i > 1: break
|
||||
header_lines.append(line.strip().split(","))
|
||||
|
||||
for i, name in enumerate(header_lines[0]):
|
||||
if name == "x-axis":
|
||||
name = "Time"
|
||||
|
||||
if header_lines[1][i] in ["second", "Volt"]:
|
||||
outStr = f"{name} [{header_lines[1][i][0]}]"
|
||||
else:
|
||||
outStr = f"{name} [{header_lines[1][i]}]"
|
||||
|
||||
scope_header.append(outStr)
|
||||
|
||||
scope_data = pd.read_csv(scope_data_path, names=scope_header, skiprows=1)
|
||||
|
||||
data[x2_shot] = {
|
||||
"info": dataInfo,
|
||||
"probes": scope_data,
|
||||
"x2": x2_channels,
|
||||
"x2-tdms": x2_tdms_data
|
||||
}
|
||||
)
|
||||
|
||||
loaded_data = data.keys()
|
||||
|
||||
makeGraph(graphData, figSavePath="./images/{0}.png", showPlot=False, doProgramBlock=False)
|
||||
print("Loaded Data")
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
||||
#pltKeyClose()
|
BIN
requirements.txt
BIN
requirements.txt
Binary file not shown.
Loading…
x
Reference in New Issue
Block a user