Thesis/main.py

172 lines
5.2 KiB
Python
Raw Normal View History

2024-10-15 15:11:10 +10:00
# Cal Wing (c.wing@uq.net.au) - Oct 2024
# Thesis Graphing
2024-09-30 19:30:28 +10:00
import os
2024-09-30 19:13:09 +10:00
import numpy as np
2024-10-15 15:11:10 +10:00
import pandas as pd
import yaml
2024-09-30 19:13:09 +10:00
from nptdms import TdmsFile
from makeGraph import makeGraph, pltKeyClose, UQ_COLOURS as UQC
2024-10-15 20:33:26 +10:00
from canny_shock_finder import canny_shock_finder
2024-09-30 19:30:28 +10:00
# Folder correction
# Make sure the relevant folders folder exists
folders = ["./images"]
for folder in folders:
if not os.path.isdir(folder): os.mkdir(folder)
2024-10-15 15:11:10 +10:00
# Load Data
DATA_PATH = "./data"
DATA_INFO = "_info.yaml"
2024-09-30 16:45:52 +10:00
2024-10-15 15:11:10 +10:00
data_to_load = [
2024-10-15 18:28:10 +10:00
"x2s5823",
"x2s5824"
2024-10-15 15:11:10 +10:00
]
2024-09-30 16:45:52 +10:00
2024-10-15 15:11:10 +10:00
data = {}
2024-09-30 19:13:09 +10:00
2024-10-15 15:11:10 +10:00
for dp in data_to_load:
data_path = f"{DATA_PATH}/{dp}/"
data_info_path = data_path + DATA_INFO
if not os.path.exists(data_info_path):
print(f"[ERR] Could not find data info file: '{data_info_path}'")
print(f"[WARN] Not Loading Data '{dp}'")
continue
2024-09-30 19:30:28 +10:00
2024-10-15 15:11:10 +10:00
with open(data_info_path, 'r') as file:
# Load data info (Cal)
dataInfo = yaml.safe_load(file)
x2_shot = dataInfo["shot-info"]["name"]
x2_tdms_data = TdmsFile.read(data_path + dataInfo["shot-info"]['tdms'])
x2_channels = x2_tdms_data.groups()[0].channels()
if dataInfo["probe-info"]["data-record"]["type"] == "scope":
scope_data_path = data_path + dataInfo["probe-info"]["data-record"]["data"]
scope_config_path = data_path + dataInfo["probe-info"]["data-record"]["config"]
# Generate Headers
with open(scope_data_path, 'r') as dfile:
scope_header = []
header_lines = []
for i, line in enumerate(dfile):
if i > 1: break
header_lines.append(line.strip().split(","))
for i, name in enumerate(header_lines[0]):
if name == "x-axis":
name = "Time"
if header_lines[1][i] in ["second", "Volt"]:
outStr = f"{name} [{header_lines[1][i][0]}]"
else:
outStr = f"{name} [{header_lines[1][i]}]"
scope_header.append(outStr)
2024-10-15 18:28:10 +10:00
#scope_data = pd.read_csv(scope_data_path, names=scope_header, skiprows=2)
scope_data = np.loadtxt(scope_data_path, delimiter=',', skiprows=2)
2024-10-15 15:11:10 +10:00
data[x2_shot] = {
"info": dataInfo,
2024-10-15 18:28:10 +10:00
"probe_headers": scope_header,
2024-10-15 15:11:10 +10:00
"probes": scope_data,
"x2": x2_channels,
"x2-tdms": x2_tdms_data
2024-09-30 19:30:28 +10:00
}
2024-10-15 15:11:10 +10:00
2024-10-15 18:28:10 +10:00
loaded_data = list(data.keys())
2024-10-15 15:11:10 +10:00
print("Loaded Data")
2024-10-15 20:33:26 +10:00
def process_data(gData):
x2_time = (gData["x2"][0][:] - gData["x2"][0][0]).astype('timedelta64[ns]') # Convert x2 to timedelta64[ns]
trigger_info = gData["info"]["probe-info"]["data-record"]["trigger"] # Get the scope trigger info
# Convert the scope times into timedelta64 & apply config offsets & delays
scope_time = np.array([ pd.Timedelta(t, 's').to_numpy() for t in (gData["probes"][:, 0] - gData["probes"][0, 0])])
scope_time =- np.timedelta64(trigger_info["alignment-offset"], 'ns')
scope_time =+ np.timedelta64(trigger_info["delay"], 'us')
#start_time = np.datetime64(f"{gData["info"]["date"]}T{gData["info"]["time"]}")
start_time = 0
x2_timesteps = np.array([0 for _ in x2_time])
2024-10-15 20:33:26 +10:00
for i, dt in enumerate(x2_time):
dt = dt.astype("int")
if i == 0:
x2_timesteps[i] = start_time + dt # should be 0
else:
x2_timesteps[i] = x2_timesteps[i-1] + dt
2024-10-15 20:33:26 +10:00
return x2_time, scope_time, x2_timesteps
2024-10-15 20:33:26 +10:00
def genGraph(gData):
x2_time, scope_time = process_data(gData)
graphData = {
"title": f"Shock response Time\nFor {gData['info']['long_name']}",
2024-10-15 20:33:26 +10:00
"xLabel": "Time (ns)",
"yLabel": "Voltage Reading (V)",
"grid": True,
"plots": [
{
"x": x2_time,
"y": (gData["x2"][4][:] - gData["x2"][4][0]) * 0.0148,
"label": "ST1"
},
{
"x": x2_time,
"y": (gData["x2"][6][:] - gData["x2"][6][0]) * 0.0148,
"label": "ST3"
},
{
"x": x2_time,
"y": (gData["x2"][16][:] - gData["x2"][16][0])/1000,
"label": "Trigger"
},
{
"x": scope_time,
"y": (gData["probes"][:, 1] - gData["probes"][0, 1]),
"label": "ST2-G1"
},
{
"x": scope_time,
"y": (gData["probes"][:, 2] - gData["probes"][0, 2]),
"label": "ST2-G2"
},
{
"x": scope_time,
"y": (gData["probes"][:, 3] - gData["probes"][0, 3]),
"label": "ST2-Trigger"
},
]
}
makeGraph(graphData)
2024-10-15 18:28:10 +10:00
gData = data[loaded_data[0]]
x2_time, scope_time, x2_timestamps = process_data(gData)
2024-10-15 20:33:26 +10:00
2024-10-15 21:25:37 +10:00
time = (gData["x2"][0][:] - gData["x2"][0][0]).astype('int')
x2_out = canny_shock_finder(time, (gData["x2"][4][:] - gData["x2"][4][0]) * 0.0148)
2024-10-15 20:33:26 +10:00
print(x2_out)
2024-10-15 21:25:37 +10:00
print("Done")
2024-10-15 18:28:10 +10:00
2024-10-15 20:33:26 +10:00
#print("Graphing Data")
#genGraph(data[loaded_data[0]])
#genGraph(data[loaded_data[1]])